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Dedication

hese video classes are
dedicated to the
memory of Saul |. Gass
(1926-2013), a mentor
and friend.
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Goals

« These video classes are designed for an audience with limited or no background
In mathematical programming, and includes: Data Scientists, Computer Scientists,
Systems/IT Engineers, and Business Analysts.

* These video classes are designed for an
audience with limited or no background In
mathematical programming, and include

* Data Scientists,

« Computer Scientists,

« Systems/IT Engineers,

* Business Analysts.
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Goals

« These video classes are designed for an audience with limited or no background
In mathematical programming, and includes: Data Scientists, Computer Scientists,
Systems/IT Engineers, and Business Analysts.

 The students taking this class will learn the foundations of Linear Programming
(LP) and Mixed Integer Linear Programming (MIP).

* The students taking this class will learn the
foundations of:

* Linear Programming (LP)

* Mixed Integer Linear Programming (MIP).
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Goals

 These video classes are oriented to “students” with no or little background in
mathematical programming, Data Scientists, Computer Scientists, Systems/IT
Engineers, and Business Analysts.

 The students taking this class will learn the foundations of Linear Programming
(LP) and Mixed Integer Linear Programming (MIP).

* You will learn how to formulate practical problems as Mixed Integer Linear
Problems for: industrial, government, and military applications.

* You will learn how to formulate practical
problems as Mixed Integer Linear Problems
for industrial, government, and military
applications.
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Goals

* These vid@9yigyses el tedcoRHgans e@gsth nfrroltie baapprokr 50
mathematical pro ramr’ning, Data Sglentist ,Co*nguter Scientists, %/ tems/IT . .
EngineerdNEIUSERES A 1k56: GUrODI for their mathematical

programming applications

 The students ta%ng this class will'learn the foundations of Linear Programming
(LP) and Mixed Integer Linear Programming (MIP).

* You will learn how to formulate practical problems as Mixed Integer Linear
Problems for: industrial, government, and military applications.



@ GUR0E!
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programming applications
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OPTIMIZATION Prereq uis |tes Introduction to
LINEAR ALGEBRA
N

* Linear algebra and calculus

 Both at the college level G.LBERTSTRA;G
 Familiarity with mathematical notation.
e = mc?

« Basic knowledge of Python

@ python’




. GUROBI
OPTIMIZATION

Remarks




These mathematical optimization models-shall capture the key
features of an optimization problem (effective), and they should
be solvable in a reasonable amount of time (efficient).
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* |n spite of the pragmatic
nature of these videos, It
IS Important to cover
theoretical aspects of
Linear Programming and
Integer Programming
problems in order to
build and tune up
efficient mathematical
optimization models.
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* These series of introduction to
mathematical programming videos
will have three main chapters.

 Linear programming overview.
* Mixed integer linear programming overview.
» Mathematical programming model building overview.
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 The duration
of each video
will be In the
range of 10
min to 15 min.
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Mathematical Programming

Background and relevance
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Origin of Mathematical

Programming




@S5ER% Origin of Mathematical Programming

*The origin of mathematical programming is the
Invention of linear programming in 1947, shortly
after World War 1I.

» “Mathematical programming enables stating
general goals and to lay out a path of detailed
decisions to make in order to “best” achieve
these goals when faced with a practical situation
of great complexity”. —George Dantzig

 Mathematical programming entails
* the formulation of real-world problems in detailed
mathematical terms (models).
 the development of technigues for solving those
models (algorithms).
« and the use of SW and HW to develop
applications.
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Mathematical Programming Remarks

It should be pointed out that mathematical programming is different
from computer programming.
* Mathematical programming is ‘programming’ in the sense of
‘planning’.

Technology Planning -
. 24 PJA

Technology Planning - 1 M Sep 6
> Jun 2
Technol Planning- 1P Technology
> ST R " Planning - 24 PIA
Jun 24
Nov 29
Planning - TECH Technology Planning - 256
> Apr 30 ’ Aug 31
Technology

Planning - TECH Planning Chart - TECH G Technology- 24 PJA Planning - 189261TR
Jan 2 > May 10 Aug 31 Dic 21

2018 PE Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dic 2018

Design phase - Apr 30 - May 1

Development phase - May 1 -Jun 30

Testing phase _ Jun 30- Aug 30
Implementation phase - Jul 18 - Aug 30

Beta testing Sep 30 - Nov 26



GUROBI

OPTIMIZATION

Mathematical Programming Remarks

« The common feature that mathematical programming models have
IS that they all involve optimization.
« This is why mathematical programming
IS often called mathematical optimization.




| Yl
Mathematical Programming Remarks
* In these video classes, we focus
on two special types of
mathematical programming
models.
* Linear Programming (LP)
models.
* Mixed Integer linear
Programming (MIP) models.
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Mathematical Programming Remarks

 Mathematical programming is a declarative approach where the
modeler formulates a mathematical optimization problem that
captures the key features of a complex decision problem.

 Mathematical optimization formulations can then be solved by
standard LP algorithms and MIP algorithms.
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Mathematical Programming Remarks

* Gurobi users formulate mathematical optimization problems
that are solved by the Gurobi callable library.

 The mathematics and computer science behind Gurobi
technology are leading edge.

 Gurobi has the best performance in the market.
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Mathematical Programming Remarks

« Gurobi users formulate mathematical optimization problems that are solved by the Gurobi callable library.

« The mathematics and computer science behind Gurobi technology are leading edge, that is why Gurobi solver has
the best performance in the market.

Comparision of Gurobi Versions

53x improvement
(8+ years)
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Mathematical Programming Remarks

 The particular implementation of the mathematics and computer
science in the Gurobi Optimizer is quite complex.

« The user does not need to worry about how to solve the
optimization problem at hand, this is done automatically by Gurobi
behind the scenes.

« The user only needs to have an efficient LP or MIP model that
captures the main characteristics of the optimization problem and
the required data for the model.



GGGGGG
oooooooooooo




GUROBI

OPTIMIZATION

1. Introduction to linear programming and
mixed integer linear programming
models - The furniture factory problem.

« lllustrative example prevalent
throughout the video series.

* Introduction to general formulations for
linear programming and mixed integer
programming problems.
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2. Furniture factory problem -
Graphical Solution

* How to graphically solve the furniture
problem when formulated as a linear

programming model.

* Introduction to important concepts
related to the theory of linear
programming.

3.0verview - Simplex method
to solve linear programming
problems.

* How the simplex method works.

« Key concepts of the theory of linear
programming.
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4.Modeling and solving the
furniture factory problem
with the Gurobi python
API.

* How to use the Gurobi Python API
to formulate the furniture problem
as a linear programming problem
and solve it using the Gurobi
callable library

5. Sensitivity analysis of LP
problems with the Gurobi
python API.

* How linear programming models have
an economic interpretation and the
Impact on the objective function value
derived from marginal changes on a
resource capacity value.
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/.Unbounded solutions,
modeling opportunity with the
Gurobi python API.

6. Multiple optimal solutions,
modeling opportunity with
the Gurobi python API.

* How a linear programming problem can be

. Howha linear lgr(?grar?r?lng problem unbounded which means that the objective
can have multiple solutions. function value can be arbitrarily large.
« How hetlvmg multlptle S.t()"j['t'o.”s « How an unbounded linear programming \
![ohrgsli?wg ;ﬂ:ﬁg%rﬂ?n' y (r)()llral?epr’rr?ve problem presents an opportunity to improve
prog gp the linear programming problem

formulation. formulation
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8.Infeasible solutions, modeling 0. Maximize or minimize
opportunity with the Gurobi python objective function.
API.
* How to tackle maximization and

* How a linear programming problem can be minimization linear programming

infeasible, lacking a solution that can satisfy problems.

all the constraints of the problem. \
* How an infeasible linear programming

problem presents an opportunity to improve
the linear programming problem formulation.
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10.Unconstrained decision 11.Initial basic solution.
variables.

* How to determine an initial
solution of a linear programming
problem in order to start the
simplex method. This is done
automatically by Gurobi.

« How Gurobi automatically handles
unconstrained decision variables.
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12.Presolve. 13. Matrix sparsity.

* An example of how Presolve « An important characteristic of
reduces the size of a linear linear programming problems
programming problem. Gurobi by that is related to the number of
default calls Presolve to non-zero coefficients associated
significantly reduce the size of an with the variables in the problem

LP problem. formulation.
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14.Duality in linear 15. Optimality conditions in
programming. linear programming.
* One of the most important  Discussion of duality and
concepts in linear programming establish sufficient and
that allows the efficient necessary conditions of optimal |
characterization of optimal solutions of a linear programming
solutions of a linear programming problem.

problem.
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16. Dual simplex method.

 Avariation of the simplex method
that is frequently used to solve
mixed integer linear programming
problems.




. GUROBI
OPTIMIZATION

Introduction to linear programming

The Furniture Factory problem
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An Illustrated
Guide to Linear
Programming

4@
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The Furniture Factory Problem

A data scientist is in charge of
v developing the Weekly Production
Plan of two key products that the
furniture factory makes: chairs
and tables.

The data scientist using machine
learning techniques predicts that
the selling price of a chair is $45
and the selling price of a table is
$80 dollars.
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The Furniture Factory Problem

A data scientist is in charge of developing the weekly
production plan of two key products that the furniture
factory makes: chairs and tables.

The data scientist using machine learning techniques
predicts that the selling price of a chair is $45 and the
selling price of a table is $80 dollars.

 There are two critical resources

In the production of chairs and

tables:

« Mahogany (measured in board
square-feet) and labor
(measured in work hours).

* There are 400 units of
mahogany available at the
beginning of each week.

* There are 450 units of labor
available during each week.
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The Furniture Factory Problem

A data scientist is in charge of developing the weekly production
plan of two key products that the furniture factory makes: chairs
and tables.

The data scientist using machine learning techniques predicts
that the selling price of a chair is $45 and the selling price of a
table is $80 dollars.

» There are two critical resources in the production of chairs
and tables:
* Mahogany (measured in board square-feet) and labor
(measured in work hours).
* There are 400 units of mahogany available at the beginning
of each week.
* There are 450 units of labor available during each week.

 The data scientist estimates that
* One chair requires 5 units of
mahogany and 10 units of labor.
* One table requires 20 units of
mahogany and 15 units of labor.
« The marketing department has
told the data scientist that ALL
the production of chairs and
tables can be sold.



el ;
The Furniture Factory Problem

A data scientist is in charge of developing the weekly
production plan of two key products that the furniture

PI‘O b I em statement: factory makes: chairs and tables.

. . The data scientist using machine learning techniques
Wh atiIs the PrOd uction Plan predicts that the selling price of a chair is $45 and the
that maximizes total revenue?

selling price of a table is $80 dollars.

» There are two critical resources in the production
of chairs and tables:

Mahogany (measured in board square-feet) and
labor (measured in work hours).
There are 400 units of mahogany available at the
beginning of each week.
There are 450 units of labor available during each
week.

The data scientist estimates that

* One chair requires 5 units of mahogany and 10 units
of labor.

* One table requires 20 units of mahogany and 15
units of labor.

The marketing department has told the data

scientist that all the production of chairs and tables

can be sold.
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The Furniture Factory Problem... 2

Q0 The data of the furniture
ob problem can be summarized in
CHAIR TABLE CAPACITY the following table:

S units 20 units 400 units « To determine a Production Plan, we

need to decide how many chairs
and tables to make in order to
maximize total revenue, while
satisfying resources constraints.

10 hours 15 hours 450 hours

$45 $80 « This problem has two decision
variables:
 x1: number of chairs to produce.
we will assume we can produce '+ x2: number of tables to produce.

Note: for the moment,
and sell fractional quan
chapter 2 of these videos. se
mathematical programming
that the decision variables mos

e of 3 chair or table. In  The number of chairs and tables to
SIS ias we show how to tackle produce should be a non-negative
rie :
problems where you require number. That is, x1, x2 > 0.

t be integer numbers.
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 If we would know the value of the amount
of chairs to produce (x1), then since each
chair generates $45, the total revenue
generated by the production of chairs
can be determined by the term 45x1
(45*x1).

e Similarly, the total revenue generated by the
production of tables can be determined by the
term 80x2 (80*x2).

* Consequently, the total revenue generated by
the production plan can be determined by the

following equation.

e Revenue = 45x]1 + 80x?2

The Furniture Factory Problem... 2

The data of the furniture problem can be
summarized in the following table:

A 1 %

CHAIR TABLE CAPACITY

5 units 20 units 400 units

10 hours 15 hours 450 hours

$45 $80
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The Furniture Factory Problem... 2

 The Production Plan is constrained by the amount of

: The data of the furniture problem can be
resources available. P

summarized in the following table:
« How do we ensure that the production plan does not

consume more mahogany than the amount of 1_[ Q‘igg
mahogany available? — 06

CHAIR TABLE CAPACITY

* If we decide to produce x1 number of chairs, then the
total amount of mahogany consumed by the production
of chairs is 5x1 (5*x1).

5 units 20 units 400 units

o . _ 10 hours 15 hours 450 hours
« Similarly, if we decide to produce x2 number of tables,

then the total amount of mahogany consumed by the

production of tables is 20x2 (20*x2). $45 $80

* Hence, the total consumption of mahogany by the
production plan determined by the values of x1 and x2
Is (5x1 + 20x2). However, the consumption of mahogany
by the production plan cannot exceed the amount of
mahogany available. We can expressed these ideas in
the following constraint:

5x1 + 20x2 <400




GUROBI

OPTIMIZATION

The Furniture Factory Problem... 2

 The production plan is constrained by the amount of

resources available. The data of the furniture problem can be

summarized in the following table:

A 1 %

CHAIR TABLE CAPACITY

* In similar fashion, we can formulate the constraint for
labor resources.

* The total amount of labor resources consumed by the
production of ghalrs Is 10 labor u_nlts multiplied by the 5 units 20 units 400 units
number of chairs produced, that is 10x1 (10*x1).

« The total amount of labor resources consumed by the LOeUs | Selrs - At etrE

production of tables is 15 labor units multiplied by the

number of tables produced, that is 15x2 (15*x2). = $45 $80

 Therefore, the total consumption of labor resources by
the production plan determined by the values of x1 and
X2 is (10x1 + 15x2). This labor consumption cannot
exceed the labor capacity available. Hence, this
constraint can be expressed as follows:

10x1 + 15x2 < 450.
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The Furniture Factory Problem... 2

* The furniture problem formulation as a linear | |
programmlng (LP) problem |S The data of the furniture prOblem )

\ o 3oy
(1.0). Maxrevenue = 45x; + 80x, — H l . %c

CHAIR TABLE CAPACITY

5 units 20 units 400 units
(2.0) 5x;+ 20x, <400 Units of mahogany capacity

10 hours 15 hours 450 hours

(3.0). 10x; + 15x, < 450 Labor hours capacity Iz $80

X1, X9 = () Non — negativity
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Introduction linear programming
and mixed integer linear
programming problems

Key components of mathematical programming models
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X4 IS the decision variable representing the number of
chairs to produce. The index 1 refers to the product
chair.

X, Is the decision variable representing the number of
tables to produce. The index 2 refers to the product
table.

We can create a set of products mapping each product
with the index associated with each decision variable.
Then, the set products = {1: chair, 2: table} maps each
index with its corresponding product.

Similarly, we can create a set for resources as follows:
resources = {1. mahogany, 2: labor} where the index 1
maps to the resource mahogany, and the index 2 maps
to the resource labor.

Key components of linear
programming model

(1.0). Maxrevenue = 45x; + 80x,
(2.0) 5x;+ 20x, < 400 Units of mahogany capacity
(3.0). 10x; + 15x, < 450 Labor hours capacity

X1,X7 = 0 Non — negativity
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Key components of linear

This LP model has several types of parameters representing programming model... 2
known quantities (data) that characterize the problem.

* Prices can be defined over the set of products, e.g. b; = 45 means (LU, M ewEihE = 4oz o 80

that the price of a chair is $45, and b, = 80 means that the price of a (2.0) 5x;+ 20x, < 400 Units of mahogany capacity
(3.0). 10x; + 15x, < 450 Labor hours capacity

table is $80.

» Resources capacity can be defined over the set of resources, e.g. K; X1,X2 = 0 Non — negativity
= 400, means that the availability of mahogany is 400 units/week, and
K, = 450 means that the availability of labor is 450 units/week.

» Technology coefficients describe the consumption of resources when
building a product. For example,

a; ;1 = 5 means that five units of mahogany are consumed when
building one chair,

a; ; = 20 means that twenty units of mahogany are consumed when
building one table,

a, = 10 means that ten units of labor are consumed when building
one chair,

a,, = 15 means that fifteen units of labor are consumed when building
one table.
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* Matrix of technology coefficients

CHAIR TABLE

all=5 al2 =20

a2l =10 a22 =15
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Key components of linear programming model... 3

(1.0). Maxrevenue = 45x; + 80x,
(2.0) 5x,; + 20x, < 400 Units of mahogany capacity

(3.0). 10x; + 15x, < 450 Labor hours capacity

X1, X2 = () Non — negativity

This LP model has two types of constraints limiting the number of chairs and tables that can
be produced.

These constraints are defined over the set of resources, and represent that the consumption of
each resource by a Production Plan cannot exceed the amount available of the resource.

The objective function is to maximize total revenue generated by the optimal Production Plan.
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Linear Programming model components

Summary

4 SET OF - Set of resources = {1: mahogany, 2: labor}
INDICES - Set of products = {1: chairs, 2: tables}
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Abstraction and generalization

of furniture problem
Daigina triPaat dReumotitem dtatioalation

(1.0). Maxrevenue = 45x; + 80x
(1(9)0) M§ 9)5(1 (—P ) ﬁxgl‘ SS) %@)6'_ [lljr?ltszof gzgl)ojggny capacity
0y o 2088, T Gsp Tt O S ay™ 400
(3.0). (az’2 = 1}(()%,9%;2((@’2 —~ 15ng@< K, =450

Non — négativity
X1,X2 >0

Parametrization of input data

Parametrization of input data of an LP problem allows
one to separate the data from the model. That is, one
can change the values of the data without changing the
model.

Linear Programming model components
Summary

~ SETOF - Set of resources = {1: mahogany, 2: labor}
INDICES

* Set of products = {1: chairs, 2: tables}

* Product prices.
- Resources capacity.
* Technology coefficients.

* PARAMETERS

« X1: number of chairs to make,

" DECISION
VARIABLES

« X2: number of tables to make

I - Amount of mahogany available
per week.

* CONSTRAINTS

- Amount of labor available per
week.

OBJECTIVE
FUNCTION

- Maximize total weekly revenue.
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Abstraction and generalization of furniture problem... 2

Parametrized LP problem formulation

Prices 2
2\
bix{ + byx, = zb-x-
(1.0) Max byxy + byx, QTR . Y
]:
(20) al,lxl + al;zxz = Kl /o Resources 2
(30) a2,1X1 + a2,2x2 < KZ S Z ai,jxj < Ki (l — 1)2)
=1

Technology M’ xz 2 O

coefficients Xj = 0, =12)
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Abstraction and generalization of
furniture problem... 2

General LP problem formulation

Objective function

coefficients
n
A, Decision
Max z ) b]x] Variables
J=1 RHS: right
hand side

Set of indices
for Constraints

;-lzl Cli,jx]' < Ki (l =1 m)

Set of indices

Technology for Variables

coefficients

n = (2) number of decision variables (products)
m = (2) number of constraints (resources)

Parametrized LP problem formulation

(10) Max b1x1 + bzxz
(20) alllxl + allzxz < K1
(30) Clz’]_xl + a2,2x2 < KZ

2
b1x1 + bzxz — 2 b]x]
j=1

ai’ij < Ki (l = 1,2)

Xj = O,(] = 1,2)
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Linear, integer, binary, mixed programming models

Linear programming problems

Objective function examples:

maximize total revenue
minimize total cost.

Constraint examples:

< constraints are typically considered for
capacity constraints where you don’t want
to exceed capacity available.

> constraints are used to model demand
requirements where you want to ensure that
at least certain level of demand is satisfied.
= constraints are used when you want to
match exactly certain activities with a given
requirement. For example, a job position
can only be filled with one resource, and
you have a set of possible qualified
resources to assign to the job.
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Linear, integer, binary, mixed programming models
L tesgpe Qo 000 e M oy [Joioddd B3 ss

Objective function examples:
* maximize total revenue
 minimize total cost.

Constraint examples:

< constraints are typically considered for
capacity constraints where you don’t want
to exceed capacity available.

> constraints are used to model demand
requirements where you want to ensure that
at least certain level of demand is satisfied.
= constraints are used when you want to
match exactly certain activities with a given
requirement. For example, a job position
can only be filled with one resource, and
you have a set of possible qualified
resources to assign to the job.

x; = 0 and integer (j = 1..n)
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Linear, integer, binary, mixed programming models
Biteaygr pcgnemmi gy gt s

Objective function examples:

maximize total revenue
minimize total cost.

Constraint examples:

< constraints are typically considered for
capacity constraints where you don’t want
to exceed capacity available.

> constraints are used to model demand
requirements where you want to ensure that
at least certain level of demand is satisfied.
= constraints are used when you want to
match exactly certain activities with a given
requirement. For example, a job position
can only be filled with one resource, and
you have a set of possible qualified
resources to assign to the job.

xj in{0,1} (j = 1..n)
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Linear, integer, binary, mixed programming models

Blixad/ iptegeamneagppogmbanmaing problems

Objective function examples:
* maximize total revenue
 minimize total cost.

Constraint examples:

« < constraints are typically considered for
capacity constraints where you don’t want
to exceed capacity available.

« > constraints are used to model demand
requirements where you want to ensure that
at least certain level of demand is satisfied.

e = constraints are used when you want to
match exactly certain activities with a given
requirement. For example, a job position
can only be filled with one resource, and
you have a set of possible qualified
resources to assign to the job.

x; = 0 and integer for some j

x; in{0,1} for some |
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Solving MIP Problems

In Mixed Integer linear Programming it is possible to have equivalent formulations of a problem

In Mixechdnteger inearrogramandrgeit IS possible to have equivalent
fO FIHM:J QWMn Q;rmaapiﬁ@ltalﬁrma, its very important to understand how the MIP algorithms behind the MIP

solver behave.

. Ql;eaét;tmee/: Frggjgmgﬁ@@@ﬁia s oivercansted rastreaiypoaifieiset Mixed
 This is why when formulating a MIP model, its very important to
understand how the MIP algorithms behind the MIP solver behave.

* Hence, we will present a limited discussion of the solution process
associated with Linear Programming and Mixed Integer Linear
Programming.
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Solving MIP Problems

In Mixed Integer linear Programming it is possible to have equivalent formulations of a problem
« But the performance of a MIP solver can be drastically different.

» This is why when formulating a MIP model, its very important to understand how the MIP algorithms behind the MIP
solver behave.

» Hence, we will present a limited discussion of the solution process associated with Linear Programming and Mixed
Integer Linear Programming.
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Furniture Factory Problem

Graphical interpretation and solution of an LP problem



LP formulation of furniture problem
B
(20) le + 20362 < 4(Q(Q Units of mahogany capacity ’

@]
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-

(1.0). Maxrevenue = 45x; + 80x,

(3.0). 10x; + 15x, < 450 Labor hours capacity l
Non — negativity
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Graphical solution of Furniture Problem ... 1 (1.0). Maxrevenue = 45x; +80x;

(20) 5_’X,‘1 + 20x2 < 400 Units of maho gany capacity
(30) 10x; + 15x2 < 45() Labor hours capacity

xl, xZ 2 0 Non — negativity
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Graphical solution of Furniture Problem ... 2 (1.0). Maxrevenue = 45x; +80x;

(20) 5_’X,‘1 + 20x2 < 400 Units of maho gany capacity
(30) 10x; + 15x2 < 45() Labor hours capacity

xl, xZ 2 0 Non — negativity
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Graphical solution of Furniture Problem ... 3 (1.0). Maxrevenue = 45x; +80x;

(20) 5_’X,‘1 + 20x2 < 400 Units of mahogany capacity

(30) 10x1 + 15x2 < 45() Labor hours capacity

xl, xZ 2 0 Non — negativity

—>

Therefore, moving from left to right is the direction for x1 > 0

—

X1 Chairs
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Graphical solution of Furniture Problem ... 4 (1.0). Maxrevenue = 45x; +80x;

(20) 5_’X,‘1 + 20x2 < 400 Units of mahogany capacity

(30) 10x; + 15x2 < 45() Labor hours capacity
Therefore, moving from low to high is the direction for x2 2 0 X1, X3 = 0 Non— negativity

=
v

X1 Chairs
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Graphical solution of Furniture Problem ... 5 (1.0). Maxrevenue = 45x; +80x;

(20) 5_’X,‘1 + 20x2 < 400 Units of mahogany capacity

(30) 10x1 + 15x2 < 45() Labor hours capacity

xl, xZ 2 0 Non — negativity

Xy A
Tables |- ——>

Therefore, any build plan in this quadrant satisfies the
constraints x1, x2 =2 0. For example:

(x1=0, x2=40)

(X120, X2=30) mfrmereeeeeeeeereeeeesssssssssssssssssssssssesssssssssssssssssssssssssssssesssesssss . (Xl:40, X2:30)

(x1=0, x2=10) = T
| | | I | | | | | S
| | | | | | | 1 | 2

_T (x1=10, x2=0) (x1=40, x2=0) (x1=80, x2=0)

(x1=0, x2=0) X1 Chairs
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Graphical solution of Furniture Problem ... 6

*5x1 + 20x2 < 400 (mahogany constraint)
*5x1 + 20%x2 = 400 (mahogany equation) ’
» Expressing x2 in terms of x1

«20x2 =400 — 5x1

X2 = 400/20 —(5/20)x1

Hence, x2 = 20 —(1/4)x1

 If (x1 =0) then (x2 =20)
|If (x1 = 1) chairs, then x2 =20 —-(1/4)(x1 =1) = 19.75 tables

Mahogany tradeoff tables for chairs is (1/4 = 0.25) ’ ‘ +H
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Graphical solution of Furniture Problem ... 7 « Let’s graph the equation
x2 =20 —(1/4)x1
Xy A
Tables -
Slope =-1/4
(X120, x2=20) (@ sicezrrrrrrrreeesssssssmmmssssssssssssssssss sy :

v

_T | | | | | | | ¢ |
(x1=80, x2=0)

(x1=0, x2=0) X1 Chairs
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Graphical solution of Furniture Problem ... 8 * Mahogany constraint:
5x1 + 20x2 < 400.

X, A * (slack variable) h1 = O:
Tables |- amount of unused
mahogany for Production
Plan (x1, x2)

* Equation representing
mahogany constraint

5x1 + 20x2 + h1 =400

(x1=0, x2=20) -@

5x,+20x, = 400 Mahogany ’
|

T I I | | | | | ¢ |
10 (x1=80, x2=0)

(x1=0, x2=0) X1 Chairs

v
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Graphical solution of Furniture Problem ... 8 * Consider Production Plan
(x1=10, x2=10)

X, A * Value of slack variable
Tables |- hl -

400 — 5(x1=10) —
| 20(x2=10)=150

(x1=0, x2=20) -@

5x,+20x, = 400 Mahogany ’
|

(x1=10, x2=10), h1=150 T
| | :

_T | I | I | | | ¢ |
10 (x1=80, x2=0)

(x1=0, x2=0) X1 Chairs

v




. GUROBI
OPTIMIZATION

Graphical solution of Furniture Problem ... 9

*10x1 + 15x2 < 450 (1abor constraint)
¢ 10x1 + 15x2 = 450 (labor equation)

« Expressing x2 in terms of x1

*x2 =30 —(2/3)x1
If (x1 =0) then (x2 = 30)

|If (x1 =1) chair, then x2 =30 —(2/3)(x1 = 1) = 29.333 tables

Labor tradeoff tables for chairs is (2/3 = 0.667) ’ ‘ +H
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Graphical solution of Furniture Problem ... 10 JRERCEYIEI RN o IE ol
x2 =30 —(2/3)x1

Xy A
Tables |-

10

—— | | | | | | f |
45 (x1=80, x2=0)

(x1=0, x2=0) X1 Chairs

v
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Graphical solution of Furniture Problem ... 11 [RiRldagehRiEIll:
10x1 + 15x2 <450

X, A * (slack variable) h2 > 0:
Tables | amount of unused labor for

production plan (x1, x2)

* Equation representing labor
constraint

10x1 + 15x2 + h2 =450

(x1=0, x2=30) 4=

(Xlzo, X2:20) e \

10 -+ w 400 (Mahogany)
| | | | | | | o |

‘_*r | | | | | | | |
(x1=10, x2=0) (x1=45, x2=0) (x1=80, x2=0) )
(x1=0, x2=0) X1 Chairs

v
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Graphical solution of Furniture Problem ... 11 RidSElEtchigrh
(x1=10, x2=10)

X, A * Slack variable value

Tables |- h2 =
450 - 10(x1=10) —
15(x2=10) = 200

(x1=0, x2=30) 4=

(x1=0, x2=20) -@ W/k
L (x1=12, x2=10), h2=200 / 5x,+20x, = 400 (Mahogany)
I | | / | | | | ,,'_ |

v

_T | | | | | |
(x1=10, x2=0) (x1=45, x2=0) (x1=80, x2=0) )
(x1=0, x2=0) X1 Chairs
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Graphical solution of Furniture Problem ... 12 ROy IR

(30) 10x1 + 15x2 < 45() Labor hours capacity

xl, xZ > (0 Non — negativity

Xy A
Tables
(x1=0, x2=30) 4=
(x1=0, x2=20) -@
10 + 5x1+20x, = 400 (Mahogany)
—> /]\ Feasible Region ‘/
| | | | | | & | S
_T | | | | I | | : | 2
(x1=10, x2=0) (x1=45, x2=0) (x1=80, x2=0) xl =0

eSReg Chairs
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Graphical solution of Furniture Problem ... 13 [ReURSE AL NEEEEStEur

(30) 10x1 + 15x2 < 45() Labor hours capacity

xl, xZ > (0 Non — negativity

xz N
Tables - * In the theory of linear
programming the
1 feasible region is
called a
(x1=0, x2=30) —4=

(x1=0, x2=20) -@

Polyhedron 5x;+20x, = 400 (Mahogany)

o : >
(x1=10, x2=0) (x1=45, x2=0) (x1=80, x2=0) xl =0

(x1=0, x2=0) Chairs
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Graphical solution of Furniture Problem ... 14 [RRLERQvEUOCRV (ol
revenue = 45x1 + 80x2

X, A X2 =
Tables |- revenue/80 —(45/80)x1

(x1=0, x2=30) 9=

(x1=0, x2=20) -@

Feasible Region 5x,+20x, = 400 (Mahogany)
, | | | o I S

| | | : I <
(x1=45, x2=0) (x1=80, x2=0) X1= 0

Chairs
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Graphical solution of Furniture Problem ... 14 X2 =
revenue/80 —(45/80)x1

Xz A e If (x1=0, x2=0), then
Tables - revenue is $0.00.
(x1=0, x2=30) 4=

(x1=0, x2=20) -@

7 Feasible Region 5x,+20x, = 400 (Mahogany)
T ! | | | | e l >

g 1 | 1 : | >
~<. Slope =-45/80 (x1=45, x2=0) (x1=80, x2=0) X120

(x1=0, x2=0) ~ :
revenue=%$0 Chairs

<. _Revenue = 45x1 + 80x2
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Graphical solution of Furniture Problem ...

Xy A
Tables |-

(x1=0, x2=30) 4=

(x1=0, x2=20) -@

(x1=0, x2=10)

revenue = 800 Feasible Region 5x1+20x, = 400 (Mahogany)
.\.\, | | | | : l -

15 * Production Plan
(x1 =0, x2 =10)

* Generates a revenue
= 45(x1=0) + 80(x2=10)
= $800

| | | . |
N (x1=45, x2=0) (x1=80, x2=0)
(x1=0, x2=0)  ~._

revenue =$0 '\'\, Revenue = 45x1 + 80x2

X112 0
Chairs
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Graphical solution of Furniture Problem ... 15 Mahogany slack variable:
hl=

400 - 5(x1=0) —
- 20(x2=10)=200

Tables -

Labor slack variable:
| h2 =
450 — 10(x1=0) —

| 15(x2=10) = 150

200 units of unused
mahogany capacity

(x1=0, x2=30) 4=

(x1=0, x2=20) -@

150 units of unused labor

o ot : S capacity
Gl Feasible Region 5x,420x, = 400 (Mahogany)
+ - . | | | o | S

| | | : I <
(x1=45, x2=0) (x1=80, x2=0) X1= 0
Chairs

Revenue = 45x1 + 80x2
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Graphical solution of Furniture Problem ... 16 BaSQUACINCURIEIREEENaUE
production of tables?

* Production Plan

Xy, A
Tables - (X1=O,X2=20)
1 Revenue =
45(x1 = 0) + 80(x2=20) =
(x1=0, x2=40) + Sl; 600
(x1=0, x2=30) —4=

(x1=0, x2=20) -@
revenue = 1600

1=0, x2=10) . :
sy Feasible Region 5x,+20x, = 400 (Mahogany)
+ - . | | | o | S

| | | : | >
(x1=0, x2=0) y, (x1=45, x2=0) (x1=80, x2=0) x1 >0
x1=0, x2= %, .
revenue =0 Soq Chairs
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Graphical solution of Furniture Problem ... 16

Xy A
Tables |-

(x1=0, x2=30) 4=

(x1=0, x2=20)
revenue = 1600

Feasible Region 5x1+20x, = 400 (Mahogany)
, I I I o | S

| | | : I <
(x1=45, x2=0) (x1=80, x2=0) X1= 0

(x1=0, x2=0) _ ' .
e 0 Revenue = 45x1 + 80x2 Chairs

* Can we continue increasing
the production tables?

* Production plan
(x1=0, x2=21)

Revenue =
45(x1 = 0) + 80(x2=21) =
S1,680

* Mahogany slack variable
h1l =400 - 5(x1=0) —
20(x2=21)= 1
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Graphical solution of Furniture Problem ... 17 ERVAEHENRVENCTYCI Y,

Xy A
Tables |-

(x1=0, x2=30) 4=

~

(x1=0, x2=20)
revenue = 1600

Feasibie Region 5x;+20x, = 400 (Mahogany)

, ® : >
\'\.\/(x1:45, x2=0) (x1=80, x2=0) X120
(x1=0, x2=0) ~

revenue =0  Revenue = 45x1 + 80x2 Chairs
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Graphical solution of Furniture Problem ... 17 RRGEENASIEEEY

X2 =
20 —(1/4)x1
Xy A
Tables |-
(x1=0, x2=30) 9=

(x1=0, x2=20)
revenue = 1600

Feasibie Region 5x;+20x, = 400 (Mahogany)
| | | & | S

| | | | | 2
\'\.\/(x1:45, x2=0) (x1=80, x2=0) X120
(x1=0, x2=0) ‘

revenue =0 Revenue = 45x1 + 80x2’ Chairs
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Graphical solution of Furniture Problem ... 18 B\ AullaECI ARG
increasing the production

of chairs while keeping the
production of tables as

Xy A
Tables |- high as we can?
1 If we build 10 chairs, then:
X2 =
20—(1/4)(x1=10)
1 =17.5 tables.
(x1=0, x2=30) 4=
e g AL ) Mahogany slack variable
(X120, x2=20" S revenue = 1850 hl —

revenue = 1600

400 - 5(x1=10) —

Feasible Region wéloo (Mahogany) 20(x2=17.5)=0
| | | : | S

| | | : |
\'\ / .(~><1=45, x2=0) (x1=80, x2=0)

(x1=0, x2=0) “ .

revenue =0 Revenue = 45x1 + 80x2 Chairs

X1= 0
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Graphical solution of Furniture Problem ... 18 REECEN«ILN«E]
(x1=10, x2=17.5)

X, A * Revenue =
Tables |- 45(x1=10) + 80(x2=17.5)
= 51,850

Labor slack variable
h2 =

450 — 10(x1=10) —
15(x2=17.5) = 87.5

(x1=0, x2=30) 4=

(x1=10, x2=17.5)
revenue = 1850

Feasible Region 5x;420x, = 400 (Mahogany)
] | | . | S

(x1=0, x2=20) -@
revenue = 1600

| | | : | 2
ey (x1=45, x2=0) (x1=80, x2=0) X120
x1=0, x2= .
revenue =0 Chairs
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* Observe that when the
Graphical solution of Furniture Problem ... 19 oroduction plan moving
along the mahogany
equation hits the labor
X2 A equation, we cannot move
IS any further.

* This happens when the
equation that defines the
mahogany constraint

intersects with the
equation that defines the
(x1=0, X230 4< labor constraint. The
associated production plan
is found by solving these
et = s system of equations.

(x1=0, x2=20) -@
revenue = 1600

Feasible Region Ui} 5x1+20x; = 400 (Mahogany) I FoY R P T T T

limits production plan.

| S

iy T ¢ [ r g
0 o-0) (x1=45 x2=0) '\/’ (x1=80, x2=0) X120
x1=0, x2= \.\. <. .

revenue = 0 N Chairs
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Graphical solution of Furniture Problem ... 19

Xy A
Tables |-

(x1=0, x.2\:301 “<

(x1=0, x2=20) -@
revenue = 1600

(x1=24, x2=14)
revenue = 2200

Feasible Region 5x1+20x, = 400 (Mahogany)

| S

~. g I 4
A ] (x1=45, x2=0) m.\/’ (x1=80, x2=0) X120
X1=U, XZ= S, )
revenue = 0 Chairs

Mahogany
5x1+20x2 — 400

Labor
10x1+15x2 — 4‘50

* Production Plan:
e 24 chairs
14 tables.

e Revenue =
45(x1=24) +
80(x2=14) = $2,200
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Graphical solution of Furniture Problem ... 19 |
Production Plan

(x1 =24, x2=14) is

optimal
Xy A

Tables Efficient Production Plan

1 Mahogany slack variable
hl =400 — 5(x1=24) —
20(x2=14)=0

Labor slack variable
ba=o. X2:3°1:7\ h2 = 450 — 10(x1=24) —
15(x2=14) = 0

(x1=0, x2=20) -@
revenue = 1600

(x1=24, x2=14)
revenue = 2200

Feasible Region 5x1+20x, = 400 (Mahogany)

| S

- . | >
o0 o) (x1=45, x2=0) \'\/' (x1=80, x2=0) X120
x1=0, x2= L. ]
revenue = 0 Chairs
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Fundamental theorem of linear programming ..

Xy A
Tables |-

20

Polyhedron S5x;+20x, = 400 (Mahogany)

| S

e S : S
(0,0) 45 .\'\.\f X12 0

" revenue = 45x,+80x, Chairs

 Definitions:

A of an LP
problem is a set of values
of the decision variables
that satisfies all the
constraints of the problem
defined by the polyhedron.

A IS
a vertex of the polyhedron
defining the feasible

region of the LP problem.
* An IS a

solution of the LP problem

that cannot be improved.

 Theorem:

* If a linear programming
problem has an optimal
solution, there is at least
one optimal solution that is
a corner point solution.
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Fundamental theorem of linear programming .. 2 RSk
*|f a linear programming

problem has an optimal
solution, there is at least
one optimal solution that is
a corner point solution.

Xy A
Tables |-

1 * Initial corner point solution
P1 =(0 chairs, O tables)

Polyhedron
(Mahogany)
, | | | & | S

2 | | | : |
~
'S
'S
'~
°,
S,
~

Chairs

? (Revenue)
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Fundamental theorem of linear programming .. 2 RSk
*|f a linear programming

problem has an optimal
solution, there is at least
one optimal solution that is
a corner point solution.

Xy A
Tables |-

1 * Initial corner point solution
P1 =(0 chairs, O tables)

« Adjacent corner point
solution

%‘ P2 =(0 chairs, 20 tables)

Polyhedron
(Mahogany)
, I I I : | S

. | | | : |
~
'S
'S
'~
°,
S,
~

\"'\.\/’ 45 X120
? (Revenue)

Chairs
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Fundamental theorem of linear programming .. 2

Xy A
Tables |-

P2

Polyhedron
(Mahogany)

| S

T ~. | = < [ r
P1 R S ~. X120

(Revenue) Chairs

* Theorem:

*|f a linear programming
problem has an optimal
solution, there Is at |least
one optimal solution that is
a corner point solution.

* Initial corner point solution
P1 =(0 chairs, O tables)

« Adjacent corner point
solution
P2 =(0 chairs, 20 tables)

 Adjacent corner point
solution
P3 =(24 chairs, 14 tables)
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Fundamental theorem of linear programming .. 2

Xy A
Tables |-

P2 ¢

Polyhedron
(Mahogany)

| S

+ - = < | =
P1 e '~.\7.1 X120

(Revenue) Chairs

* Theorem:

*|f a linear programming
problem has an optimal
solution, there Is at |least
one optimal solution that is
a corner point solution.

* Initial corner point solution
P1 =(0 chairs, O tables)

« Adjacent corner point
solution
P2 =(0 chairs, 20 tables)

 Adjacent corner point
solution
P3 =(24 chairs, 14 tables)
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Fundamental theorem of linear programming .. 3 JEEESIehlile:l gl CEEENY
the price (b1) of chairs.

* New oportunity to

X2 AN .
INcrease revenue

Tables -

30\\—,\—

P2 ¢

Polyhedron
(Mahogany)

| S

45 R x1 =0

Revenue = blxl +80x, Chairs

P1
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Fundamental theorem of linear programming .. 3 JEEEGERETEL LT IYEY
P4 = (45 chairs, 0O tables)

IS optimal

Xy A
Tables |-

30 I=

P2 ¢

Polyhedron
(Mahogany)

| S

- | >
48, X1= 0
Revenue = b;x;+80x, *_~7 Chairs

P1
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Fundamental theorem of linear programming .. 4 REMSSCUE _
* If a linear programming

Vertex | Equations problem has an optimal
A (0,00 x1=0andx2=0 solution., there is gt least |
Tablis one optlmal_ solutlor_l that is
1 a corner point solution.

Note '
(45,0) 10x1 + 15x2 = 450 (labor) and x2=0 (Com‘:? ztomtes;/ ?’;t'tf‘ees
polyhedron are the

| solution of a system
of equations.

30 I=

Revenue = b;x;+byx,
P2

P3

Polyhedron
(Mahogany)
P4, | I . | -

| r g
X112 0
Chairs

= 45 80
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Fundamental theorem of linear programming .. 5

Vertex

Equations

x1=0andx2=0

10x1 + 15x2 = 450 (labor) and x2=0

X, 4 (0,0)
Tables |-
| (45,0)
30 e

P2

Infeasible points | Equations

(0,30) x1 =0 and labor equation

(80,0) mahogany and x2=0

Revenue = b;x;+byx,

P3

Polyhedron
(Mahogany)

P1

N

I
80

45

X112 0
Chairs

* Theorem:

* If a linear programming
problem has an optimal
solution, there is at least
one optimal solution that is
a corner point solution.

Note that the vertices
(corner points) of the
polyhedron are the
solution of a system
of equations.

Also, observe that there are
other points that are the
solutions of g system of
equations, although these points
are infeasible because they are
not vertices of the polyhedron.
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Enumeration approach

Enumeration of solutions of the system of equations for the furniture problem

Points of interest Vertex of the polyhedron Objective function value. Revenue = 45x1 + 80x2
(0,0) Yes (feasible) 0 =45*0 + 80¥0
(0,20) Yes (feasible) 1600 = 45*0 + 80*20
(24,14) Yes (feasible) 2200 = 45*24 + 80*14 Optimal!!
(45,0) Yes (feasible) 2025 = 45%45 + 80™0

(0,30) No (infeasible) 2400 = 45*30 + 80*30
(80,0) No (infeasible) 3600 = 45*80 + 80%0



~ This number is larger
- » than the number of atoms

(-~ 1089 .in the known
- universe !l
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Is there a way that we can traverse vertices in the
polyhedron in a more efficient way?

Sigaplex Method !!!
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Simplex method

Overview



Furniture problem LP problem formulation

(1.0). Maxrevenue = 45x; + 80x,
(20) 5x1 + ZOXZ < 4(0(0 Mahogany

(3.0). 10x; + 15x, < 450 Labor
X1,X2 > () Non — negativity

i
Linear Programming

X, A

Tables 4

@f

N

’(Mahogany)
o |
: [ re
X1= 0
Chairs

80

)

45



Furniture problem LP problem formulation

(1.0). Maxrevenue = 45x; + 80x,
(20) 5x1 + ZOXZ < 4(0(0 Mahogany

(3.0). 10x; + 15x, < 450 Labor
X1,X2 > () Non — negativity

i
Linear Programming

X, A

Tables 4

N

’(Mahogany)
| i |
| - I >
X112 0
Chairs

80

Polyhedron

'\'\/1 45
" (Revenue)

P1



i
Linear Programming

X, A

Tables 4

P2

P1

’(Mahogany)
® | S
: [ re
X1= 0
Chairs

80

Furniture problem LP problem formulation

(1.0). Maxrevenue = 45x; + 80x,
(20) 5x1 + ZOXZ < 4(0(0 Mahogany

(3.0). 10x; + 15x, < 450 Labor
X1,X2 > () Non — negativity

/1 (Revenue)



| Yl
Linear Programming/Simplex Method

We call the formulation of an LP problem the original LP problem

(1.0). Maxrevenue = 45x, + 80x,
(2.0) 5x,+ 20x, <400 Mahogany
(3.0). 10x; + 15x, < 450 Labor

X1,X9 =0 Non — negativity
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Linear Programming/Simplex Method

The original LP problem in a standard form is:

(1.0). Maxrevenue = 45x, + 80x,
(2.0) 5x,; 4+ 20x, + h; = 400 mahogany
(3.0). 10xq + 15x, + h, = 450 vabor

X1,X2, hl’ hZ > () Non — negativity

Original LP problem.

(1.0). Maxrevenue = 45x; + 80x,
(20) 5X1 + ZOXZ < 400 mahogany
(30) 10x1 + 15x2 < 450 Labor

X1,X7 = 0  Non — negativity




Furniture problem standard form
(1.0). Max revenue = 45x; + 80x,
(2.0) 5x;+ 20x, + h; = 400 Mahosany
(30) 10x1 -+ 15x2 + hZ — 4.50 Labor
X1,X2, hl' hZ > 0 Non — negativity

(x1=0, x2=0) initial solution

GUROBI
Revenue =0

OPTIMIZATION

Linear Programming/Simplex Method .. 2

h1 = 400 —5(x1=0) -20(x2=0) = 400

Xy A

Tables 4

h2 = 450 —10(x1=0) -15(x2=0) = 450
x1=0, x2=0, hl1 =400, h2 =450 Feasible solution

N

’(Mahogany)
o |
: | >
X1= 0
Chairs

I
|
80

30




Furniture problem standard form
(1.0). Max revenue = 45x; + 80x,
(2.0) 5x;+ 20x, + h; = 400 Mahosany
(30) 10x1 -+ 15x2 + hZ — 4.50 Labor
X1,X2, hl' hZ > 0 Non — negativity

GUROBI
Feasible solution

OPTIMIZATION

Linear Programming/Simplex Method .. 2

x1=0, x2=0, h1 =400, h2 =450

Xy A

Tables 4

hl, h2 Basic variables
x1, x2 Non basic variables
x1=0, x2=0, hl = 400, h2 = 450 Basic Feasible solution

N

’(Mahogany)
o |
: | >
X1= 0
Chairs

80

30

20 (2,

Polyhedron
45

00 | .
ey ‘ ' (Revenue)
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Linear Programming/Simplex Method .. 3

A basic solution is defined by the values of the basic
Xy A and non basic variables.

Tables -

Production Plan (x1=0, x2=30)

hl = 400 -5(x1=0) -20(x2=30) = -200

h2 = 450 —10(x1=0) -15(x2=30) = 0

+ x1=0, x2=30, h1 =-200, h2 =0 Basic infeasible solution

Polyhedron

’(Mahogany)
| | | ; |

| | | ¢ | 2
80 X112 0

Chairs

N

Furniture problem standard form

(1.0). Max revenue = 45x; + 80x,
(2.0) 5x;+ 20x, + h; = 400 Mahogany
(3.0). 10x; + 15x, + h, = 450 laver

X1, X2, hl' hZ >0 Non — negativity




Furniture problem standard form
Mahogany

(1.0). Max revenue = 45x; + 80x,
(2.0) 5x; + 20x,+ h; = 400
Non — negativity

(30) 10x1 -+ 15x2 + hZ — 4.50 Labor
X1,X2, hl' hZ >0

X1, X2, h]_; h'Z = 0

30 I= i
\’(Mahogany)
— | | : —
45 80 X120
Chairs

el
Linear Programming/Simplex Method .. 4
LP problem in a canonical form with respect to the

Xy A basic variables (h1, h2) :

Tables -
(10) Max z = 45x1 AR 80X2 Sk Oh]_ o th

(2.0) h; =400 — 5x; — 20x, Unused mahogany Reduced costs:

_ B _ Objective funcion

(3.0) h, =450 —10x; — 15x, Unused Ial?o-r coefficients of non basic

Non-negativity variables (x1, x2)




5 Furniture problem canonical form
(10) Max z = 4‘5.7(1 + 80x2 + 0h1 + th
(2.0) h;=400 — 5x; —20x, Mahogany

(3.0) h, =450 — 10x; — 15x, Labor
X1,%5,hy, hy =0 Non-negativity

Linear Programming/Simplex Method

SLaicl)
Current basic feasible solution:
h1=400 and h2=450, x1=0 and x2=0

Xy A
Revenue: z=0
Max {45,80} =80 Table price

Tables |
Make tables, x2 >0

X2 enter the basis

30 I= i
Polyhedron
’(Mahogany)
| | | & | S
| | | | - | 2
45 80 X120
Chairs




GUROBI

OPTIMIZATION

Xy A

Tables 4

30

Linear Programming/Simplex Method .. 5

How many tables (x2) can we make?

hl =400 — 20x2

h2 = 450 — 15x2

400/20 = 20 tables
450/15 = 30 tables

Furniture problem canonical form

80

(1.0) Max z = 45x; + 80x, + 0h; + Oh,
(2.0) h;=400 — 5x; —20x, Mahogany
(3.0) h, =450 — 10x; — 15x, Labor

Non-negativity

X1,%X5,hqy,hy =0

N

\’(Mahogany)

| | | : |

] | | | : I <
Chairs
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Xy A

Tables 4

30

Linear Programming/Simplex Method .. 5

If

Furniture problem canonical form

(10) Max z = 4‘5.7(1 + 80x2 + 0h1 + th

(2.0) h;=400 — 5x; —20x, Mahogany
Non-negativity

(3.0) h, =450 — 10x; — 15x, Labor
X1,%X5,hqy,hy =0

x2 =30, hl = 400 — 20(x2=30) = -200!!!!
Min ratio test {400/20 = 20, 450/15 = 30} = 20 tables

hl leaves the basis
Pivoting: Express problem canonical form (x2, h2)

\’(Mahoganv)
— | | ; —
45 80 X120
Chairs
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Linear Programming/Simplex Method (Pivoting) .. 6

(10) Max z = 45x1 i 80X2 A Ohl + Oh2

X1,X,hq,hy, =0

In equation 2.0, express X2 in terms of x1 and hl

(2.0) x,=20 — (Y/ ) — (150



. GUROBI
OPTIMIZATION

Linear Programming/Simplex Method (Pivoting) .. 6 (1.0) Max z = 45x; + 80x, + Ohy + Ohy
(2.0) h;=400 —5x; — 20x,

In equation 2.0, express x2 in terms of x1 and h1l (3.0) h; =450 —10x; — 15%;

(2.0) x=20 —(Y/ )y — (1/50)

xl) xZ; hl; hz 2 O

We substitute the value of x2 in equation (3.0)
(3.0) hy =450 — 10x; — 15(x; = 20 — (1/,)x; — (1/50) 1)

=150 - (25/4)x1 + (3/g)h
Substitute the value of x2 in (1.0), the objective function

— 1600 + 25x1 + OXZ — 4h1 + th
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Linear Programming/Simplex Method .. 7

Furniture LP problem in a canonical form with respect to the basic variables (x2, h2).

Xy A
Tables |-

(1.0) Max z = 1600 + 25x; + Ox, — 4h; + Oh,
(2.0) x, =20 — (1/4)361 — (1/20)h1 Production of tables
T (3.0) h, =150 — (25/4)361 + (3/4)h1 Unused labor capacity

X1, X2, hl! hz >0 Non-negativity
30 s j

20

Pivoting
< POthedron \’
DN (Mahogany)
- , | | | & | £

(0,0) 80 X112 0

| |
S /1 ~.\\/1 45
o = s = Chairs
\'\~=F (Revenue)‘F (Revenue)=1600




| Yol
Linear Programming/Simplex Method (Pivoting) .. 8
(20) xZ — 20 . (1/4)X1 — (1/20)h1 Production of tables

(3.0)  hy =150 — (25/4)x; + (3/4)hy Unusediabor capaciy

X1,X9,h1,h, =0 Non-negativity

Simplex method: iteration 2
Stepl: x1 enters the basis.

Step2: minimum ratio test, min{20/(1/4)=80 ,150/(25/4)=24 }=24. h2 leaves
the basis

Step3: Pivoting express problem in canonical form with respect to (x2, x1)
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Linear Programming/Simplex Method (Pivoting) .. 9 (1.0) Max z = 1600 + 25x; + 0x, — 4h; + Oh,
(20) x; =20 — (1/,)x; — (1/20)h1

In equation 3.0, express X1 in terms of hl and h2 (3.0)  hy =150 = (2/,)s + (/)

X1,X9,hy,hy =0

(3.0) x; =24+ (3/25)hy — (4/25)h,

We substitute the value of x1 in equation (2.0)

(2.0) x; = 14— (/55 )11 + (1/55) 1

Substitute the value of x1 in (1.0), the objective function

z = 2200 + 0x; + Ox, — 1h, — 4h,
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Linear Programming/Simplex Method (Pivoting) .. 10

Furniture LP problem in a canonical form with respect to the basic variables (x2, x1).

Xy A (1.0)Max z = 2200+ 0x; + 0x, — 1h; — 4h,
Tables |-
(2.0) x, =14 — (2/25)h1 + (1/25)h2 Production of tables
(3.0) x; =24+ (3/25)h; — (4/25)h, Production of chairs

X1, X, h1,hy =0 Non-negativity

Pivoting

30 s j

20

Polyhedron .
"-\ ’(Mahogany)

80 X1= 0

F Revenue)=2200 i
F (Revenue] ( I Chairs

Vv

o t
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Linear Programming/Simplex Method.. 11 LN 0 T G e e T

Simplex method: iteration 3.
’ (2.0) x; = 14— (%/p5) 1 + (Y5) 12

(3.0) x; =24+ (3/25)h; — (4/25)h,
Xz A Step 1: reduced costs (h1, h2) < 0. Recall that the 1%y by, By > 0

Tables reduced costs are the coefficients of the non basic.

Obijective value cannot increase. STOP
T Basic feasible solution (x1=24, x2=14, h1=0, h2=0), is
optimal.

30 s 1

20 ¢

Polyhedron

’(Mahogany)

| . ! N
| : | >
X1= 0

h. | |
1 |
45 '\.\/ = 80
; (Revenue)=2200 Chairs

o5 T
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Summary of simplex method for the maximization case

1. Transform the original LP problem into the standard form. Consider an initial basic feasible
solution.

2. Express the LP problem in a canonical form with respect to the current basic feasible
solution.

3. If the reduced costs of all the non basic variables are < 0, STOP —the current basic feasible
solution is optimal. Else, choose a non basic variable with the largest positive reduced cost

to enter the basis.

4.Consider the column vector of the non basic variable entering the basis. If all the
coefficients of this column vector are positive, the entering non basic variable can be
arbitrarily large, hence the LP problem is unbounded.
I. Assume that the column vector has at least one negative component.
. Apply the minimum ratio test over the equations where the entering non basic variable
has negative coefficients to determine the basic variable that will leave the basis.
lii.(Pivoting) Go to 2.) to determine the new basic solution.
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Modeling and solving LP problems

Gurobi Python API
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Furniture Problem: solved with Gurobi ... 1

Manufacturing Problem: Furniture factory

Max Revenue = 45x; + 80x;

Subject to :

Mahogany : 5x; + 20x;, < 400
Labor : 10x; + 15x;, < 450
Non — negativity : x;,x, =0

el L L This command imports the Gurobi functions and classes.
from gurobipy import *
# Create Furniture new model The Model() constructor creates a model object f . The name of this new model is ‘Furniture’.
f = Model("Furniture™) This new model f initially contains no decision variables, constraints, or objective function.
" L, This method adds a decision variable to the model object f, one by one; i.e. x1 and then x2.
# Create variables . . .

The argument of the method gives the name of added decision variable. The default values

x1 = f.addVar(name="chairs™)
= f.addVar({name="tables™)

upper bound.

# Define objective function

f.setObjective(45%x1 + 86%*x2, GRB.MAXIMIZE)

# Add mahogany constraint
f.addConstr(5*x1 + 28*x2 <= 488,
# add Labor constraint

f.addConstr(16%x1l + 15*x2 <= 458,

"mahogany™)

"labor™)

are applied here; i.e. the decision variables are of type continuous and non-negative, with no

This method adds the objective function to the model object f. The first
argument is a linear expression (LinExpr) and the second argument defines

the sense of the optimization.

linear on ob ect LmExp cons fa c nt term, Iplus asum
oreqﬁﬁ@ép Q@ 5 lj]%% conS|de S a linear
expression e constralnts the sense of

the constraint, and |ts capaC|ty value. The Iast argument gives the name of
the constraint.
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Furniture Problem: solved with Gurobi ... 2

# Run optimization engine
t.optimize()

Optimize a model with 2 rows, 2 columns and 4 nonzeros
Coefficient statistics:

Matrix range [Ge+B@, 22+81]
Objective range [5e+81, 8e+81]
Bounds range [@=+B@, @e+88]
RHS range [42+B2, Se+82]

FPresolve time: @.81s
Presolved: 2 rows, 2 columns, 4 nonzeros

Iteration Objective Primal Inf. Dual Inf.
a@ 6.56086082+31 2.968758e+30 6.5088082+081
2 2.260860082+83 g .88008824+80 6.00e8082+08

Solved in 2 iteraticons and @.82 seconds
Optimal objective 2.208008200=+83

# Display optimal production plan
for v in f.getVars():
print({v.varName, v.x)

print( 'Optimal total revenue:’, f.objVal)

(‘chairs’, 24.8)
('tables’, 14.8)
('Optimal total revenue:', 2268.8)

Time
as
as

This method runs the optimization engine to solve the LP problem in the model object f

Minimum and maximum absolute value of the matrix of technology coefficients.
Minimum and maximum absolute value of the objective function coefficients.
Minimum and maximum absolute value of the upper and lower bound values.
Minimum and maximum absolute value of the RHS values.

Simplex method iteration information.
An optimal solution was found.

This method retrieves a list of all variables in the model object f

The print function displays the decision variable names and solution value

The print function displays the objective function value of the model object f

Optimal Production Plan
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* We should use appropriate
data structures and Gurobi
python functions and
objects to abstract the
problem, and have the
Gurobi python code build
the LP problem of any size.
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Furniture Problem (abstracted): solved with Gurobi .. 1

General Furniture model formulation

Let price,, be the price of product p € products = {chairs, tables}, and let capacity, be the capacity available of resource
r € resource = {mahogany, labor}.

Let bom, ; be the amount of resource r required by product p. Then the general formulation of the Furniture problem is:

Max Z price,make,

P € products
Subject to :

E bom, ,make, < capacity, Y r € resources

P priclucts

Parametrized furniture LP
problem formulation

make, =0 ¥ p € products
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Furniture Problem: Parametrized solved with Gurobi .. 2

=

# import gurobi Library
from gurobipy import *

# resources data

resources, capacity = multidict({
"mahogany’: 468,
‘labor': 458 })

# products data,

products, price = multidict({
‘chair’: 45,
‘table’: 8@ })

# Bill of materials: resources required by each product
bom = {

( 'mahogany’, 'chair'): G5,
{ 'mahogany’, 'table'): 28,
("labor’, ‘chair®): 18,
("labor®, "table’): 15 }

The multidict function returns a list which maps
each resource (key) to its capacity value.

This multidict function returns a list which maps
each product (key) to its price value.

This dictionary has a 2-tuple as a key, mapping the
resource required by a product with its quantity per.
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Furniture Problem: Parametrized solved with Gurobi .. 3

# Declare and initialize model
f = Model(' Furniture')

# Create decision variables for the products to make
make = f.addVars(products, name="make")

The Model() constructor creates a model
object f.

This method adds decision variables to the
model object f, and returns a Gurobi
tupledict object (make) that contains the
variables recently created.

The first argument (products) provides the
iIndices that will be used as keys to access
the variables in the returned tupledict. The
last argument gives the name ‘make’ to the
decision variables. The decision variables
are of type continuous and non-negative,
with no upper bound.
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Furniture Problem: Parametrized solved with Gurobi .. 4

This method adds constraints to the model object f.

E bom, ,make, < capacity, ¥ r € resources

P € products

res = f.addConstrs(((sum(bom[r,p]*make[p] for p in products) <= capacity[r]) for r in resources), name='R")
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Furniture Problem: Parametrized solved with Gurobi .. 5

# The objective 1s to maximize total profit Max Z price, make,,
f.setObjective(make.prod(revenue), GRB.MAXIMIZE) p € products

This method adds the objective function to the model object f.
The first argument is a linear expression which is generated
by the (prod) method. The (prod) method is the product of the
object (revenue) with the object (make) for each product p in
the set (products). The second argument defines the sense of
the optimization.
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Furniture Problem: Parametrized solved with Gurobi .. 6

# save model for inspection
f.write( ' furniture.lp’)

Y Model Furniture

YW LP format - for model browsing. Use MPS format to capture full model detail.
Maximize

80 make[table] + 45 make[chair]

Subject To

R[mahogany]: 268 make[table] + 5 make[chair] <= 486

R[labor]: 15 make[table] + 1@ make[chair] <= 456
Bounds

End
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Furniture Problem: Parametrized solved with Gurobi .. 7

# run optimization engine
f.optimize()

Optimize a model with 2 rows, 2 columns and 4 nonzeros

Coefficient statistics: This method runs the Optimization engine
obiecrive bange Freror. Berol) to solve the LP problem in the model
Bounds range [e+B@, @2+08] Objectf
RHS range [42+82, Se+82]

Presolve time: 8.82s
Presolved: 2 rows, 2 columns, 4 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
L= 6.566e808a+21 2.09628750e4+20 6.5088082+01 85
2 2.28808082+083 g8.880080e+a0 B.B888388a+08 as

Solved in 2 iterations and 8.82 seconds
Optimal objective 2.260808288=+63

# display optimal values of decision variables
for v in f.getVars():
if (abs{v.x) > le-8):
print{v.variame, v.x)

# display optimal total profit value
print( 'total revenue', f.objVal)

{'make[table]’, 14.8) . ]
(‘make[chair]", 24.8) Optimal Production Plan

{'total revenue', 2288.8)
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Final Remarks

* The geophetrioatibeg retedies doabasecliaasihéastilaisol ididmatatasather,
ablatyenttyirrgstet iofh @quatibesviiaedeffimessa icoioe rydihb 6t dueie of the
poprogdroaritsacaeteendioies. the feasible region of an LP problem.

X2

Tables

20

Pivoting

(QO)"

2 price, make,,

p e products
Subject to :

bom, ,make, < capacity, ¥ r € resources

0= products

make, =0 ¥ p € products

’(Mahogany)
© I

# run optimization engine

f.optimize()

Solved in 2 iterations and ©.02 seconds
Optimal objective 2.20602008802+483

# display optimal values of decision variables
for v in f.getVars():
1if (abs(v.x) > 1le-6):
iprint(v.varName, v.x)

# display optimal total profit value
print( total revenue', f.objVal)

{'make[table]’, 14.8)
{'make[chair]’, 24.8)
('total revenue', 220@.8)

b

| |
45 '\\' =
| ~ (Reven

X120
Chairs
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Sensitivity analysis of LP problems

Gurobi Python API
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Furniture Problem: economic interpretation

Economic interpretation in Linear Programming models

 Solving LP problems provides more information than only the values of the decision
variables and the value of the objective function.

 Associated with an LP optimal solution there are shadow prices
(a.k.a. dual variables, or marginal values) for the constraints.

* The shadow price of a constraint associated with the optimal solution, represents
the change in the value of the objective function per unit of increase in the right-
hand side value of that constraint.

* There are shadow prices associated with the non-negativity constraints. These
shadow prices are called the reduced costs.
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Fur

niture Problem: economic interpretation .. 2

For example, suppose the labor capacity is increased from 450 hours to 451 hours.
What is the increase in the objective function value from such increase?

Since the constraints on mahogany capacity (2.0) and labor capacity (3.0) define the
optimal solution, we can solve the following system of equations

5x1+20x, =400 Mahogany capacity

1()x1 + 15x2 — 451 Labor capacity
The new values of the decision variables are: chairs (x1) = 24.16, tables (x2) = 13.96
The new value of the objective function (revenue) is = $2,204

The shadow price associated with the labor capacity is $2,204 - $2,200 = $4. That
IS, we can get $4 of increased revenue per hour of increase in labor capacity.

Remark: The shadow price value of $4 remains constant over a range of value
changes of the mahogany capacity. The calculation of this range is beyond the
scope of this course.
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Fur

niture Problem: economic interpretation .. 3

Similarly, we can compute the shadow price of the mahogany constraint by solving
the following system of equations

5x1+20x2 = 401 Mahogany capacity
10x; 4+ 15x, = 450 Labor capacity

The new values of the decision variables are: chairs (x1) = 14.08, tables (x2) = 23.88
The new value of the objective function (revenue) is = $2,201

The shadow price associated with the mahogany capacity is $2,201 - $2,200 = $1.
That is, we can get $1 of increased revenue per unit of increase in mahogany
capacity.

Remark: The shadow price value of $1 remains constant over a range of value
changes of the labor capacity.
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Furniture Problem: simplex method revisited

The LP problem in a canonical form with respect to the optimal basic variables (x1, x2) is

Max z = 2200 + 0x1 + Oxz = 1h1 — 4‘h2

(2.0) x; = 14— (2/55 )11 + (4/55 )1
(3.0) x; = 24 + (3/25)h, — (4/25)h,
X1,Xp,h{,hy =0

 Remarks: Retted! that i lvanddn2ase tihe wdick vhhallesusesbcaiadityitf thahnghogaby capeatbity
s tarenaredidbioe cagacdy byrixtrdineespeaseihe value of h2 (unused capacity of labor) by

e the total revenue will pe reduced by.$4. .
. ? e Interpretation of the slack varlaeb esy IS the amount of resource capacity not consumed by

« (Darposluctisranbbisisrstaond telileat the shadow price of mahogany is $1 and the one of labor is

%4!!!! . .
* The optimal solution is

o CE) Eﬂﬁ%ﬁ'gﬁ ?ﬁé%ﬂ%ﬁxﬂﬁ%{ﬁ&b Egt%frﬁ%w&ﬁlgé?’\?g:‘% the shadow prices of the resources.

ck vari ahogany constraint
 Slack variable (h2) of labor constraint =0
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Furniture Problem: solved with Gurobi

This method adds constraints to the model object f. We store the constraints generated Iin
an object called (res).

res = f.addConstrs(((sum(bom[r,p]*make[p] for p in products) <= capacity[r]) for r in resources), name='R")

For each resource constraint in the dictionary (res), check if its associated shadow price is
greater than zero. Then print the resource constraint name and the resource constraint shadow

price.

Recall that the object # display shadow prices of resources constraints
(res) stores all the for r in res:

information related to the if (abs(res[r].Pi) > le-6):

constraints of the model f. print(res[r].Constriame, res[r].Pi)

("R[mahogany]’, 1.0)
('R[labor]’, 4.8)
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Furniture Problem: economic interpretation .. 4

* Is it profitable to make a third product, like desks?
« Assume that the price of the desk is $110,
« and the desk consumes 15 units of mahogany and 25 units of labor

» The previous python code has parametrized the Furniture LP model, i.e. the model
formulation does not depend on the data of the problem. Therefore, we just generate a
new set of data that includes the new product information

# products data,

products, price = multidict({
"chair': 45,
"table': 8@,
"desk': 118 })

# B1ll of materials: resources required by each product
bom = {

( ‘'mahogany’, ‘'chair'): 5,

( 'mahogany', 'table'): 2@,

( 'mahogany’, ‘'desk'): 15,

("labor®, ‘chair'): 10,

('labor', 'table'): 15,

('labor®, ‘'desk'): 25 }



GUROBI

OPTIMIZATION

Furniture Problem: economic interpretation .. 5

* The new LP model is

# save model for inspection
f.write( furniture.lp’)

% Model Furniture
% LP format - for model browsing. Use MPS format to capture full model detail.
Maximize
80 make[table] + 45 make[chair] + 118 make[desk]
Subject To
mahogany: 28 make[table] + 5 make[chair] + 15 make[desk] <= 486
labor: 15 make[table] + 18 make[chair] + 25 make[desk] <= 458
Bounds
End
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Furniture Problem: economic interpretation .. 6

# run optimization engine
f.optimize()

# display optimal values of decision variables
for v in f.getvars():
if (abs(v.x) > 1le-6):
print(v.varName, v.x)

# display optimal total profit value
print( ' total profits', f.objval)

('make[table]", 14.0) It is not profitable to produce
E.i‘gﬁ{‘:gﬁégt;.még%@ ) desks. The optimal solution
’ remains the same.

# display shadow prices of resources constraints
for r in res:
if (abs(res[r].Pi) > 1le-6):
print(res[r].ConstrName, res[r].Pi)

('R[mahogany]’, 1.0) The shadow prices of the
('R[labor]’, 4.@) resources remain the same.
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Furniture Problem: economic interpretation .. 7

* Notice that we can use the shadow price information of the resources to check if it is worth it to
make desks.

» The shadow price of the mahogany capacity constraint is $1
» The shadow price of the labor capacity constraint is $4

* Let’'s compute the opportunity cost of making one desk and compare it with the price of a
desk. If this opportunity cost is greater than the price, then it is not worth it to make desks.

* The opportunity cost can be computed by multiplying the units of mahogany capacity that
one desk built consumes by the shadow price of mahogany capacity, and multiplying the
hours of labor capacity that one desk built consumes by the shadow price of labor capacity:

* That is, ($1)*15 (units of mahogany) + ($4)*25 (hours of labor) = $115 > $110

» Therefore, investing resources to produce desks, otherwise used to produce chairs and tables,
IS not profitable.
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Multiple optimal solutions

Gurobi Python API
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Furniture Problem New business conditions

* The data scientist in charge of
production planning for the
furniture factory uses machine
learning to predict that the
market price of a chair is now
$50 and the market price of a
table is $75.

CHAIR AND TABLE PRICES

* The equation of the objective
function under these new
business conditions is:
revenue = 50x1 + 75x2.




New business conditions

* In this case, the production
of building 24 chairs

plan
and 14 tables and the plan
of building 45 chairs and 0
tables are both optimal.
IS

i
Furniture Problem
Furniture problem standard form
Units of mahogany capacity

B (1.0) Max revenue = 50x; + 75x,
(3.0) 10x; + 15x, + h, = 450 Labor hours capacity
X1,%2,hi,hy =0 Non-negativity
associated optimal basic
feasible solution is x1=24,
x2=14, h1=0, h2=0.
» The production plan IS
defined by the labor and a
non-negativity constraint (x2 =

0), i.e. no tables

are built. The associated
optimal basic feasible solution
Is x1=45, x2=0, h1=175, h2=0.

» The production plan
defined by the mahogany and
labor constraints. The

Xy A

Tables

|
|
80
Chairs

/1 30 T=.
."~,\ (x1=24,
,(Mahogany)
+ ——
X1= 0
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Modified Furniture Problem: solved with Gurobi ... 1

General Furniture model formulation -alternative optimal solutions

Let price, be the price of product p € products = {chairs, tables}, and let capacity, be the capacity available of resource
r € resources = {mahogany. labor}.

Let hom,; be the amount of resource r required by product p. Then the general formulation of the Furniture problem is:

Max 2 price,make,,

Parametrized furniture LP P produet
. Subject to :
problem formulation _
z bom, ,make, < capacity, V r € resources

P € producis
make, =2 0 ¥ p € products

We modify the objective function as follows:

New Price

Chairs %50
Tables %75

# products data.

products, price = multidict({ New data, same model formulation
‘chair’': 50,
‘table’': 75 })
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Modified Furniture Problem: solved with Gurobi ... 2

# run optimization engine
f.optimize( )

# display optimal values of decision variables
for v in f.getvars():
print(v.variame, v.x)

# display optimal total profit value
print( 'total revenue', f.objval)

('make[table]’, ©.0)
("'make[chair]’, 45.8)
("total revenue', 2250.8)

# display shadow prices of resources constraints
for r in res:
print(res[r].ConstrName, res[r].Pi)

('R[mahogany]’, ©.8)
('R[labor]’, 5.0@)

# display reduced costs of decision variables

for v in f.getvars(): ,
print(v.varhame, ab

('make[table]’, ©.8)

( 'make[chair]’, ©.8)

Gurobi found one of the optimal solutions ... P2

Notice that the shadow price of the resource mahogany
for this alternative optimal solution is zero,

... the marginal value of mahogany for this optimal
solution is zero.

Reduced cost of the non basic variable (tables) is zero.
This means that if we produce more tables (and produce
less chairs) the revenue generated remains the same.
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New (original) LP problem

Max z = 50x1 + 75x2

s.t.5x1 4+ 20x2 < 400

10x1 + 15x2 < 450
x1,x2 >0

LP problem in canonical form with respect to the
optimal basic variables (x1, hl) found by Gurobi:

Max z = 2,250 + (0x1 + 0h1) + (0x2 — 5h2)

Non basic variables
h1 =175 — (25/,)x2 + (1/,)h2 (2.0)

x1 = 45— (3/,)x2 = (1/10)h2  (3.0)
x1,x2,h1,h2 >0

The LP problem in a standard form is
Max z = 50x1 + 75x2 + 0h1 4+ Oh2

s.t.5x1 + 20x2 + h1 = 400
10x1 + 15x2 + h2 = 450
x1,x2,hl,h2 >0

The reduced cost of non basic variable x2 is zero,
hence if we increase its value, the optimal objective
function value does not change. Let’s decide which
basic variable should become non basic (value of
zero) by computing the minimum ratio test:
min{175/(25/2) = 14,45/(3/2) = 30} = 14;
therefore h1 will become non basic variable. Hence,
we pivot on constraint (2.0) and the column of
variable x2.
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Furniture Problem: simplex method revisited .. 2

LP problem in canonical form with respect to the basic variables (x1, x2):

Max z = 2,250 + Oh1l — 5h2

x2 =14 — (2/5c)h1 + (1/55)h2  (2.0)

x1=24—(3/p6)h1 = (¥/,5)h2  (3.0)
x1,x2,h1,h2 >0

Modeling Opportunity
From the mathematical model point of view, we have two alternative optimal solutions S1= (x1 =24, x2 =14, h1=0,

h2=0) and S2 = (x1 =45, x2 =0, h1= 175, h2 = 0), both with a maximum total revenue of $2,250.

The data scientist points out that from the business perspective, the “optimal” solution S1 is preferred to the
“optimal” solution S2, because the latter solution wastes 175 units of mahogany.

The data scientist decides to modify the LP model by now interpreting the slack variables as the amount of
wasted resources, and defines the new decision variables:
x3 is the amount of unused mahogany and x4 is the amount of unused labor.

The data scientists uses machine learning to predict that the per unit inventory carrying cost of mahogany is $1 ,
and the unused per hour labor cost is $2. Then, the new LP model formulation is:
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Furniture Problem: simplex method revisited .. 2

Modeling Opportunity
From the mathematical model point of view, we have two alternative optimal solutions S1= (x1 =24, x2 =14, x3 = x4 = 0) and S2 = (x1 =45, x2 =0, x3 = 175, x4 = 0), both with a maximum total

revenue of $2,250.

The data scientist notice that from the business perspective, the “optimal” solution S1 is preferred to “optimal” solution S2, because with the latter solution is wasting 175 units of mahogany.

The data scientist decides to modify the LP model by now interpreting the slack variables as the amount of wasted resources, and defines the new decision variables:
x3 is the amount of unused mahogany and x4 is the amount of unused labor.

The data scientists using machine learning estimates that the per unit inventory carrying cost of mahogany is $1 , and the unused per hour labor cost is $2. Then, the new LP model formulation is:

Max z = 50x1 + 75x2 — 1x3 — 2x4

s.t.5x1 + 20x2 + x3 = 400
10x1 + 15x2 + x4 = 450
x1,x2,x3,x4 >0
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General Furniture model formulation -Penalize wasting resources

Let price, be the price of product p € products = {chairs, tables}, and let capacity, be the capacity available of resource
r € resource = {mahogany, labor}.

Let waste, be a new decision variable that measures the amount of unused resource r € resoruces = {mahogany, labor}. Let cost, be the per unit cost of
unused resource capacity.

Let bom, ; be the amount of resource r required by product p. Then the new formulation of the Furniture problem is:

Max Z price,make, — Z cost,waste,

p € products F € resources

Subject to :

Z bom, ,make, + waste, = capacity, Y r € resources
p € producis

make, >0 ¥ p € products

waste, > 0 Y r € resources
Price

Per unit Price

Chairs  $50
Tables $75

Resources cost table:

Per unit Cost

Mahogany  $1
Labor  §2
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# import gurobi Library
from gurobipy import *

# resources data
resources, capacity, cost = multidict({ We add a cost parameter to the resources

‘mahogany': [400, 1], multidict to penalize the waste of resources.
‘labor’: [450, 2] })

# products data,

products, price = multidict({
"chair': 50,
‘table’: 75 })

# B1ll of materials: resources required by each product
bom = {

( ‘'mahogany’, ‘chair'): 5,

( ‘'mahogany’, "table’): 2@,

("labor’, ‘chair’): 10,

('labor', 'table'): 15 }
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# Declare and initialize model
f = Model('Furniture’)

# Create decision variables for the products to make
make = f.addvars(products, name="make")

# Create decision variables for the wasted resources We add a new type of decision variable to
waste = f.addvars(resources, name="waste") measure the unused resource Capacity_

# Capacity resource constraints: Z bom, ,make, + waste, = capacity, ¥ r € resources

# The amount consumed by the products made + the waste = capacity , e producis

res = f.addConstrs(((sum(bom[r,p]*make[p] for p in products) + waste[r] == capacity[r]) for r in resources), name='R")
# The objective 1s to maximize total profit Max Z price,make, — Z cost,waste,

r & resources

f.setObjective(make.prod( price ) - waste.prod(cost) , GRB.MAXIMIZE) p € products
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# run optimization engine
f.optimize()

# display optimal values of decision variables
for v in f.getvars():
print(v.varName, v.Xx)

# display optimal total profit value
print('total profits', f.objval)

(‘'make[table]”, 14.0) The optimal solution is now making 14 tables and 24 chairs with a

('make[chair]”, 24.0) total objective function value of $2,250.
('waste[mahogany]’, ©.@)

(‘waste[labor]”, ©.0) Notice that the solution of making O tables and 45 chairs is no longer
(“total profits’, 2256.0)  ,hiimal since the objective function value is
($50%45 = $2,250) — ($1*175 = $175) = $2,075.
That is, the alternative solution (chairs = 45, tables =0) is no longer
optimal.
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Furniture Problem New business conditions

* The operations manager of the
furniture factory tells the data
scientist that she is negotiating
with the supplier of mahogany
to obtain an unlimited amount
of mahogany as long as the
factory procures at least 400
units of mahogany per week.

In addition, the operations

manager is negotiating with
the union to obtain extra
workforce as long as the
factory hires at least 450 hours
of labor per week.
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Furniture Problem

. The new LP problem formulations is:
(1.0) Max revenue = 45x, + 80x,

. (20) 5X1 -+ 20x2 > 400 Mahogany constraint
'\'\\\(3.0) 10X1 + 15X2 > 450 Labor constraint

New business conditions

* Notice that the polyhedron
defined by the feasible region

X .
. IS unbounded.

Tables

Clearly, the maximum of the
objective function is
unbounded, since the revenue
that we can make can be

arbitrarily large by increasing
the number of chairs (x1)
and/or the number of tables

1 Constraint (3.0) Feasible

Labor (x2) as much as we want.

F Recall, that we had assumed
' : - that we sell everything that we
produce.

Constraint (2.0)

Mahogany Conclusion: With unlimited

mahogany and labor, revenue
o\ IS unlimited.
Chairs
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# Create an C_’bj ect of type list to store Z bom, ,make, > capacity, N r € resources
#the constraints for each resource p € roducts

res = f.addConstrs(((sum(bom[r,p]*make[p] for p in products) »= capacity[r]) for r in resources), name='R")

# run optimization engine
f.optimize()

Optimize a model with 2 rows, 2 columns and 4 nonzeros
Coefficlient statistics:

Matrix range [5e+0@8, 2e+01 ]
Objective range [5e+01l, 8e+01]
Bounds range [ee+0B, Be+00 ]
RHS range [4e+82, Se+82]

Presolve time: ©.83s

BTved in © iterations and 9.93%seconds

Infeasible or unbounded model

The Gurobi solver could not find an optimal solution and declares the
problem either infeasible or unbounded.
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Erint{ ‘tﬂj’gal pmfiﬁ' , T.objval) Since an optimal solution does not exist, the objective function
or v in T.getVars(): . : . : .
print(v.varName, v.x) value and the value of th.e demsu_)n variables is void. In this case,
we get an error when trying to print these values.

AttributeError Traceback (most recent call last)
<ipython-input-11-alb5e7b87473> in ()
---=-> 1 print('total profits’', f.objval)

2 for v in f.getvars():

3 print(v.variame, v.x)

model.pxi in ()
model.pxi in ()
model.pxi in ()

AttributeError: Unable to retrieve attribute ‘objval’

# display optimal values of decision variables
if f.status == GRB.Status.OPTIMAL:
print({ 'Optimal solution found')

print('total profits', f.objval) To avoid the error, we need to check the status of the LP model,

for v in f.getvars(): and only print the solution values if an optimal solution was found.
print(v.varMame, v.x)
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f.setObjective(make.prod(profit), GRB.MINIMIZE) - _
f.optimize() We changed the sense of the optimization to

Optimize a model with 2 rows, 2 columns and 4 nonzeros check if the model has a feasible solution.

Coefficient statistics:

Matrix range [Se+2B, 2e+01 ]
Objective range [5e+01l, 8S8e+01]
Bounds range [ee+eB, ©e+00 ]
RHS range [4e+©2, S5e+02]

Presolve time: ©.01s
Presolved: 2 rows, 2 columns, 4 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
& 2.20000000e+00 1.8625680e4+02 2. 8900068e+00 s
2 2.2000000e+03 2.0000600e4+00 E.0000060e+00 s

solwved in 2 iterations and ©.82 seconds
Optimal objective 2.200000000e+03

# display optimal values of decision variables
if f.status == GRB.Status.OPTIMAL:
print{ 'Optimal scolution found')
print( 'total profits’', f.objwval)
for v in f.getVars():
print(v.varName, v.x)

optimal solution found The Gurobi solver now finds a minimum optimal solution. Hence,
( "total profits', 22008.0) he LP bl is f ibl d for th imizati
( ‘make[table]’, 14.0) the LP problem is feasible and for the revenue maximization

('make[chair]’, 24.0) problem, it is unbounded.
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New business conditions

* The data scientist recognized
that it is unrealistic to assume
that an infinite amount of
chairs and tables can be sold.

« The data scientist using
predictive analytics techniques
has determined that at most
200 chairs and 150 tables can
be sold.
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New furniture problem

X2
Tables

150

Constraint (3.0)
Labor

Feasible Region

Constraint (2.0)
Mahogany

©

\'\/ Revenue equation:
"'~ _Revenue = 45x1 + 80x2

=

X1 200
Chairs

New business conditions

(1.0) Max revenue = 45x; + 80x,
(2.0)  5x; + 20x; = 400 wahosany consiraint
(3.0)  10xq + 15x5 = 450 ‘eberconstraint
0<x <200 0<x, <150
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Let price, be the price of product p € products = {chairs, tables}, and let capacity, be the capacity available of resource
r € resources = {mahogany, labor}.

Let's assume that we have an unlimited availability of resources. The only constraint is that the suppliers of mahogany and labor requires to consume at least
400 units of mahogany and 450 units of labor per planning period.

However, the marketing deparment has established that at most 200 chairs and 150 tables can be sold.
Let's define the upper bound on chairs and tables be the vector upBound,

Let bom,; be the amount of resource r required by product p. Then the general formulation of the Furniture problem is:

Max Z price,make,
P € products
Subject to :

Z bom,,make, > capacity, N r € resources
P € prodicts '

0 < make, < upBound, V p € products

# products data,

products, price, upBound = multidict({
‘chair': [45, 200],
"table': [8@, 150] })

Adding the upper bounds to the multidict for products
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# Declare and initialize model
t = Model( ' Furniture')

# Create decision variables oducts to make Adding the upper bounds to the multidict for
make = f.addvars(products,Cub=upBound,) name="make") IDFOChJCtS

# Create an object of type List to store
#the constraints for each resource

res = f.addConstrs(((sum(bom[r,p]*make[p] for p in products) »>= capacity[r]) for r in resources), name='R")

# The objective 1s to maximize total profit
f.setObjective(make.prod(profit), GRB.MAXIMIZE)
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# save LP model for inspection
f.write( ' Furntureeees.lp’)

% Model Furniture
Y LP format - for model browsing. Use MPS format to capture full model detail.

Maximize
80 make[table] + 45 make[chair]
Subject To
R[mahogany]: 20 make[table] + 5 make[chair] »>= 488
R[labor]: 15 make[table] + 18 make[chair] »>= 456
Bounds
make[table] <= 156
make[chair] <= 208
End
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# run optimization engine
f.optimize()

Optimize a model with 2 rows, 2 columns and 4 nonzeros
Coefficient statistics:

Matrix range [Ge+e0, 2e+01]
Objective range [5e+@1, 8e+@1]
Bounds range [2e+02, 2e+02]
RHS range [4e+02, 5e+02]

Presolve removed 2 rows and 2 columns
Presolve time: ©.84s
Presolve: All rows and columns removed

Iteration Objective Primal Inf. Dual Inf. Time
5] 2.1060000e+04 0.0Bbobee+00 0.600000e+00 as

Solved in @ iterations and ©.15 seconds As expected, Gurobi solver now finds

# display optimal values of decision variables ] _

if f.status == GRB.Status.OPTIMAL: The optimal number of chairs to make
print('Optimal solution found') . .
print('total revenue’, f.objval) IS equql to the chairs upper bound anc_l
for v in f.getvars(): the optimal number of tables to make is

print(v.varName, v.x)

equal to the tables upper bound.

Optimal solution found

(‘total revenue’, 21000.0) The optimal objective function value is
Cmoetenoind”” 000 a total revenue of $21,000
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Minimum Optimal Solution New business conditions

» The data scientist receives a
memo from the CEO of the
furniture company saying that
the new board of directors of
the company requires a total
revenue of at least $4,500 per

week.




Coiiodd]
Furniture Problem

Xy A

Tables

N

New business conditions

* Evidently, there are no points
that satisfy all the constraints
simultaneously. Hence this LP

problem is infeasible.

The new LP problem formulations is:
(1.0) Max Revenue = 45x; + 80x,
Mahogany constraint

5x1 + 20x, < 400

Constraint (4.0) (20)
Board of directors (30) 10x1 + 15x2 S 4‘50 Labor constraint
(4_0) 45x1 _|_ 80x2 2 4500 Board of directors constraint
X1,%X3; =0

(4.0) Board of directors constraint

Constraint (3.0)
Labor

Constraint (2.0)
Mahogany
: |

= I
X1= 0

| |
’ Chairs

' Profit equation:
Profit = 45x1 + 80x2

(0,0



GUROBI

OPTIMIZATION

Infeasible Furniture Problem: using with Gurobi .. 1

Let price, be the price of product p € products = {chairs, tables}, and let capacity, be the capacity available of resource
r € resources = {mahogany, labor}.

The board of directors has imposed a constraint of a minimum revenu(. minRev = $4, 500, ber week.

Let bom, ; be the amount of resource r required by product p. Then the general formulation of the Furniture problem is:

Max Z price,make,,

P € products

Subject to :

Z bom, ,make, < capacity, Y r € resources
P € products -

E price,make, = minRev
p € products .

make, 2 0 ¥V p € products

minRev = 4500

Defining a new parameter to capture the minimum revenue value that the board of directors may impose.

# Board constraint of minimum revenue
minProfitConstr = f.addConstr((sum(price[p]*make[p] for p in products) »>= minRev), name='B")

Adding a new constraint to the f model to ensure that the minimum revenue impose by the Board is satisfied.
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# save model for inspection
f.write( ' furnitureB.lp’)

% Model Furniture

YW LP format - for model browsing. Use MPS format to capture full model detail.
Maximize

860 make[table] + 45 make[chair]

Subject To

R[mahogany]: 20 make[table] + 5 make[chair] <= 468

R[labor]: 15 make[table] + 18 make[chair] <= 458

B: 80 make[table] + 45 make[chair] »= 45068

Bounds

End
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# run optimization engine
f.optimize()

Optimize a model with 3 rows, 2 columns and 6 nonzeros
Coefficient statistics:

Matrix range [5e+80, 8e+01]
Objective range [5e+81, 8e+81]
Bounds range [Be+BB, Be+00]
RHS range [4e+B2, S5e+83]

Presolve time: 8.83s

Solved in @ iterations and ©.83 seconds
Infeasible or unbounded model

# display optimal values of decision variables
if f.status == GRB.Status.OPTIMAL:
print( 'Optimal solution found")
print( 'total revenue’, f.objval)
for v in f.getvars():
print(v.varName, v.x)

We check the status of the f model to
see if Gurobi found an optimal solution.
If true, then we print the optimal solution
and the associated objective function
value.
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#Check 1f model infeasible or unbounded

if f.status == GRB.Status.INF_OR_UNED :
print('LP problem is either infeasible or unbounded")
print( 'Checking if LP problem is feasible')

print('set objective function to zero value and re-run engine' ) We set an objective with zgro
f.setObjective( ©, GRB.MAXIMIZE) value. Then run the Gurobi solver
f.optimize()

to find any feasible solution.

LP problem is either infeasible or unbounded

Checking if LP problem is feasible

set objective function to zero value and re-run engine
Optimize a model with 3 rows, 2 columns and 6 nonzeros
Coefficient statistics:

Matrix range [5e+08, 8e+01l ]
Objective range [©e+08, ©e+00]
Bounds range [ee+00, ©e+00 ]
RHS range [4e+82, 5e+03 ]

Presolve time: ©.01s

solved in @ iterations and 8.81 seconds
Infeasible model

We check the status of the f

#Check 1f model with zero objective is infeasible model to see if I_t Is infeasible. If
if f.status == GRB.Status.INFEASIBLE : true, then we print that we have
print('LP problem is proven to be infeasible') proven that the model is

LP problem is proven to be infeasible infeasible.
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Infeasible Furniture Problem Addressing infeasibility

There is a Board of Director
meeting and the data scientist
cannot tell the Board that their
requirement of having a total
revenue of at least $4,500 per
week is Infeasible !l

The data scientist knows that the
cause of infeasibility is the
limited capacity available of
resources that does not allow
the production of chairs and
tables to reach the minimum
level of total revenue.

Feasible Region g

The data scientist calls the
supplier of mahogany and talks
with the labor union and they
agree to increase the supply at a
cost. An extra unit of mahogany
will cost $20 and one hour of
overtime of labor will cost $30.
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Furniture model formulation: buying extra supply

Let price, be the price of product p € products = {chairs, tables}, and let capacity, be the capacity available of resource
r € resources = {mahogany, labor}.

The board of directors has imposed a constraint of a minimum revenue, minRev = $4, 500, per week.

To satisfy Board of Directors demands, the supplier of mahogany can get extra mahogany at a rate of $20 per unit; and the labor union can provide overtime of
labor at a rate of $30 per unit.

Let's define a new decision variable, extra, , that measures the extra capacity of resource r € resources = {mahogany, labor} which are required to meet
the Board of Directors demands. Let the cost of extra capacity be defined by the parameter extraCost, for each resource
r € resources = {mahogany, labor}.

Let bom, ; be the amount of resource r required by product p. Then the general formulation of the Furniture problem is:

Max Z price,make, — Z extraCost,extra,

p € products reresources
Subject to :

E bom, ,make, — extra, < capacity, Y r € resources
P € producis

2 price, make, > minRev
P € producis
make, > 0 ¥V p € products

extra, = 0 ¥ r € resoruces
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Max z price,make, — Z extraCost extra,

p € products reresources

Subject to :

Z bom, ,make, — extra, < capacity, ¥ r € resources
p € products

E price,make, > minRev
P € products

make, >0 ¥ p € products

extra, > 0 V r € resoruces

# resources data

resources, capacity, extraCost = multidict({ We include in the resources multidict the extra cost
‘'mahogany’: [4e8, 20],

, , of adding resource capacity.
labor': [45@, 30] })

# Create decision variables for extra capacity of resources Create a new decision variable to measure the extra
extra = f.addvars(resources, name="extra") resource capacity to meet the Board constraint.

# Create an object of type List to store 2

: bom, ,make, — extra, < capacity, YV r € resources
#the constraints for each resource

p € products

res = f.addConstrs(((sum(bom[r,p]*make[p] for p in products) - extra[r] <= capacity[r]) for r in resources), name='R")

We add a decision variable (extra) to the RHS of each resource constraint to add the extra capacity to satisfy the Board constraint.

# The objective 1s to maximize total revenue

Max E price,make, — Z extraCost extra,
f.setObjective(make.prod(price) - extra.prod(extraCost), GRB.MAXIMIZE)

P € producis FEresources

We subtract the cost of the extra capacity to meet the Board constraint .
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Furniture Problem: addressing infeasibility .. 3

# save model for inspection
f.write( furnitureB.lp’)

% Model Furniture
YW LP format - for model browsing. Use MPS format to capture full model detail.

Maximize
88 make[table] + 45 make[chair] - 28 extra[mahogany] - 38 extra[labor]
Subject To
R[mahogany]: 28 make[table] + 5 make[chair] - extra[mahogany] <= 488
R[labor]: 15 make[table] + 18 make[chair] - extra[labor] <= 458
B: 80 make[table] + 45 make[chair] »>= 4580
Bounds
End
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Furniture Problem: addressing infeasibility .. 3

# run optimization engine
f.optimize()

Optimize a model with 3 rows, 4 celumns and 8 nonzeros
Coefficient statistics:

Matrix range [1e+08, 8e+01]
Objective range [2e+81, 8e+01]
Bounds range [ee+00, ©e+08]
RHS range [4e+02, 5e+83]

Presolve time: ©.10s
Presolved: 3 rows, 4 columns, 8 nonzeros

Tteration Objective Primal Inf. Dual Inf. Time
5] 1.8625080e+31 1.815625e+30 1.662580e+01 as
4 -1.4e06008e+04 B .006eBee+00 B .060600e+00 as

Solved in 4 iterations and ©.16 seconds . 5 .
optimal objective -1.400000000e+04 Gurobi solver found an optimal solution.

# display optimal values of decision variables
if f.status == GRB.Status.OPTIMAL:
print('Optimal solution found')
print('total revenue', f.objval)
for v in f.getVars():
print(v.varName, v.x)
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Furniture Problem: addressing infeasibility

Optimal solution found
("total revenue', -14000.0)
( 'make[table]’, ©.0)

( ‘'make[chair]’, 100.0)
("extra[mahogany]’, 108.0)
("extra[labor]’, 550.0)

To meet the Board request
requires 100 extra units of
mahogany and 550 extra
units of overtime.

The optimal production plan
IS to produce only 100 chairs.

The company will lose
$14,000 per week !

The Board request was
proven not to be a good idea.
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Final Remarks about model status

* It is a good modeling practice that the LP problem is well characterized.

* This means that when the data of the LP problem satisfy the specified modeling
assumptions, the LP problem has an optimal solution.

* That is, the LP problem is never infeasible, unbounded, and there are no alternate
optimal solutions.

* To avoid infeasibility add “artificial” variables to the constraints that may be
infeasible. These artificial variables will have a “high” penalty in the objective
function in such a way that they become positive only to make the problem feasible.
Ideally, these artificial variables have a business meaning that the user of the
decision support application can properly interpret.

* To avoid that the LP problem is unbounded, define realistic upper bounds for all the
decision variables of the LP problem.

* If the LP problem has alternate optimal solutions, if possible add another objective
'h functions that eliminates the alternate optimal solutions.
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Linear Programming Overview

Further considerations:

 Maximize or minimize objective function
 Unconstrained decision variables

e Initial basic solution

* Presolve

* Matrix sparsity
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What if we need to minimize an objective function?

We have assumed that we are maximizing an LP problem. Notice that the rules
for a non-basic variables to become basic variables can be changed to address

the minimization problem.

Alternatively, since Min 2}1:1 bjxj = —Max — ?:1 bjx; , then we solve

n
Max };_,(—bj)x; . Note: The default sense in
Gurobi is to minimize the
| objective function of th
Example: Min {1, 2} =-Max {-1, -2} =1 problem we want to soﬁ/le_Plfwe
want to maximize the objective
We need to use the Gurobi

# The objective 1s to maximize total revenue argument (G
t.setObjective(make.prod(price) - extra.prod(extraCost), GRB.MAXIMIZE) when def|r$|n§ﬁ]MA;(|M,ZE)
_ € objective
function.
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What if a decision variable can be positive or negative?

If the decision variable is unconstrained in sign, the Gurobi
Optimizer will take care of this automatically.

An example of a decision variable that is unconstrained is profit.
Negative profit is interpreted as a loss.
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How to determine an initial basic feasible solution?

Gurobi behind the scenes may use atechnique called Phase 1 of Linear
Programming:

 This technique entails adding non-negative artificial variables to the equations
(=) and greater-or-equal (=) inequalities.

« Then replace the original objective function by a new objective, minimize the
summation of the artificial variables.

* If the minimum value of the summation of artificial variables is positive, the LP
problem is infeasible.

* If the minimum value of the summation of artificial variables is zero, then the
basic feasible variables of the optimal solution are an initial basic feasible
solution of the original LP model (*).

(*) There are some subtleties about this statement beyond the scope of this class.
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How to determine an initial basic feasible solution? .. 2

« Consider the following LP problem with the Furniture factory board request.

Max Z price,make, — Z extraCost,extra,

p € products FEresources

Subject to :

E bom, ,make, — extra, < capacity, ¥ r € resources
p € producis

Z price,make, > minRev
P € products

make, =0 ¥ p € products

extra, 2 0 Y r € resoruces

« An instance of the parametrized formulation is

Max z = 45x; + 80x, —20x3 — 30x,
5x1 + 20x, — x3 < 400

10x; + 15x, — x, < 450

45x, + 80x, = 4500

X1,X5,X3.X4 = 0
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How to determine an initial basic feasible solution? .. 2

* Original LP problem.

Max z = 45x; + 80x,
5x1 + 20x, — x3 < 400
10x; + 15x, — x, < 450
45x; + 80x, = 4500

X1,X2,X3.X4 = 0

— 20x3; — 30x,

« WWe add an artificial variable alpha to the = constraint. At Phase 1 of linear programming,

we minimize the value of alpha, i.e. alpha should be equal to zero and non-basic
variable, to identify an initial basic feasible solution.

Original LP Problem
Minw =«
5x1 + 20x, — x3 < 400
10x; + 15x, — x, < 450
45x, + 80x, + a = 4500

X1,X2,X3.X4, 0 = 0

LP Problem Standard Form
Maxw = —«

5x1 + 20x, — x3 + hy = 400

10x; + 15x, — x4, + h, = 450

45x, + 80x, + a — s; = 4500

X1,X,X3.X4,, N1, hy,51 =0

LP Problem Canonical Form
Max w = —4500 + 45x; + 80x, — s
h;y =400 — 5x; — 20x, + x3
h, =450 — 10x; — 15x, + x4
a = 4500 —45x; — 80x, + s4

X1,X,X3.X4,, N1, hy,51 =0
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How to determine an initial basic feasible solution? .. 3

We apply the simplex method to the Phase 1 LP problem in canonical form with respect to the basis
(hq, hy, ). The following table shows the basic feasible solution at each iteration of the simplex

method, the non basic variable entering the basis and the basic variable leaving the basis.

; : : : Non basic variable Basic variable leaving

Iteration Basic feasible solution Phase 1 : : :
entering the basis the basis
1 hy =400 h, =450 a = 4500 X hq
2 x, =20 h, =150 a = 2900 X3 h,
3 X, =30 x3 =200 a=2100 X4 a
4 X, = 56.25, x3 =725 x, = 393.75 X1 X5
5 x; =100 x3 =100 x, =550 This solution is optimal.

Notice that a is non basic and = 0. This solution is an initial basic feasible solution of the original LP problem.

Iteration 4 continues with Phase 2 of the simplex method, where we find the optimal feasible basic solution.
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Optimal solution found using Gurobi

# run optimization engine
f.optimize()

Optimize a model with 3 rows, 4 columns and 8 nonzeros
Coefficient statistics:

Matrix range [le+0@, 8e+01]
Objective range [2e+01, 8e+01]
Bounds range [ee+00, ©0e+00 ]
RHS range [4e+82, 5e+83]

Presolve time: @.10s
Presolved: 2 rows, 4 columns, 8 nonzeros

Tteration Objective Primal Inf. Dual Inf. Time
5] 1.8625008e+31 1.815625e+30 1.862500e+81 as
il -1.4000080e+04 B.00000e+20 8.800000e+00 as

Solved in 4 iterations and 6.16 seconds
Optimal objective -1.400000000e+04

# display optimal values of decision variables
if f.status == GRB.Status.OPTIMAL:
print( 'Optimal solution found')
print('total revenue', f.objval)
for v in f.getvars():
print(v.variame, v.x)

Optimal solution found

("total revenue', -14000.0) Gurobi corroborates the optimal solution found manually
('make[table]', ©.0) ; .

{'make[chairl' . 100.0) — 1 = 100 using the two phases simplex method approach
('extra[mahogany]’, 100.0) —> x3 = 100

('extra[labor]', 550.8) —— x4 = 550
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How to determine an initial basic feasible solution? .. 4

Remarks

« Gurobi user does not need to provide an initial basic feasible
solution, or solve the phase 1 minimization of the sum of
artificial variables problem to generate an initial basic solution.

« Gurobi only needs the original LP formulation. It automatically
finds an initial feasible basic solution to start the simplex
method.
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Presolve

 LP problems can use a large amount of computer time, consequently it is advisable to have LP
models that can be solved as quickly as possible.

* The Presolve engine of Gurobi can dramatically reduce the size of an LP problem. The
reduced problem can then be solved faster than the original one. The solution of the reduced
problem is then used to generate a solution of the original problem.

* To briefly illustrate the core ideas behind a Presolve approach consider the following example.

* Notice that x3 has a negative objective coefficient. We
Max 2x1 + 3x2 —x3 —x4 ... (0) have a maximization problem, then we want to make x3

Subject to: x1+x2 +x3-2x4<4 ... (1) as small as possible.

» Observe that x3 has positive coefficient in constraints (1)
£ Xx1—x2+x3—- x4 <1..(2) and (2),

y x1 + x4 <1..(3) * and these constraints are of the ‘<’, then we want to
make x3 as small as possible.
. x1, x2, x3, x4 20 ... (4)

 Therefore, x3 can be reduced to its lower bound of zero
and eliminated as a redundant variable.
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Presolve ..2
. Max 2x1 + 3x2 —x4 ... (0)
. Subject to: x1+x2 -2x4<4 ... (1)
. -x1—x2 — x4 <1..(2)
. x1 + x4 <1...(3)
. x1, x2, x3, x4 20...(4)

 After removing x3, let’'s analyze constraint (2) —x1 —x2 —x4 < 1. Notice that all coefficients of the
variables in this constraint are negative. For any positive value of variables x1, x2, and x3
constraint (2) is satisfied, consequently this constrained is redundant and can be eliminated.

The reduced problem is then:

With large models, a Presolve approach
could lead to significant reductions in

. . Max 2x1 + 3x2 —x4 ... (0)
This simple Prgsolve _ the amount of computatio
approach eliminated  Subjectto: x1+x2-2x4<4...(1) solve the model. | r?ave seneze((ael(jlt(?odbnFO
one variable and one o x1 + x4 <1...(3) Presolve reduce 3 large scale problem

constraint. x1,x2, x4 20and x3=0... (4) | tolessthan 10% of its original size,
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Example of the power of Gurobi Presolve

Gurobi Case Study:

Project Porifolio Optimization at the
former Hewlett Packard Global IT

GUROBI

OPTIMIZATION

» Solution approach:

3 RiRiBEERHE0E ﬁbdﬂ%iiﬁtﬂ@%‘j&ﬁt

ﬁﬁlt%&ww tﬁgr}@gmt@e@ﬂggreavallablhty and budgets) and other busmess

constraints (e.g. project precedence constraints).
» Gurobi solver was used to solve this complex MIP problem.
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Example of the power of Gurobi Presolve .. 3

Size PPO model RO et Reduction %
after Presolve

Total # of variables 9307 3170 66 %
Total # of constraints 6461 337 94 %
Gurobi solving time - 8.53 s -
Gurobi solving time no presolve 156.1 s +
Gurobi with
Presolve runs
17X faster
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Matrix sparsity of LP problems

+ Rrepaps takeratirarsgeaefitie spaistiynithiadnatsisahtiachesioaxtarefficentsdegy
stestiitaantty iscelgeséhe size of the problem.

> THiS 08788 BRtie STl R WRehADIAS IR RiBi Kh SR OLIC SRR GREMNRANES 1S
BRIEERComputer implementation of the simplex method called the revised simplex
method.

Objective function
coefficients

Zn T
Obijective ; Decisi
Function Max b] x] — A

] Variables
J=1 RHS: right
hand side

|
. n O Set of indices
Constraints ——> Z]=1 al,]x] S Kl (l — 1 " m> z

for Constraints

Technology

I Set of indices
coefficients X] 2 0 (J — 1 -n) for Variables
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Linear Programming Duality
In the section of sensitivity analysis of Linear Programming, we asked the following question:

 For the furniture problem, is it profitable to make a third product, like desks?
« Assume that the price of the desk is $110,
« and the desk consumes 15 units of mahogany and 25 units of labor.

« Shadow prices determine the marginal worth of an additional unit of a resource:
» The shadow price of the mahogany capacity constraint is $1.
» The shadow price of the labor capacity constraint is $4.

» Let's compute the opportunity cost of making one desk and compare it with the price of a desk. If
this opportunity cost is greater than the desk price, then it is not worth it to make desks.

» The opportunity cost can be computed by multiplying the units of mahogany capacity that one
desk built consumes by the shadow price of mahogany capacity, and multiplying the units of
labor capacity that one desk built consumes by the shadow price of labor capacity:

» That s, ($1)*15 (units of mahogany) + ($4)*25 (hours of labor) = $115 > $110.

» Therefore, investing resources to produce desks, otherwise used to produce chairs and tables,
IS not profitable.
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Linear Programming Duality .. 2

Duality in Linear Programming IS an
unifying theory that established the
relation between an LP problem -
called Primal Problem, and another

related LP problem -—called Dual

Problem, where its decision variables

(dual variables) are the shadow
prices of the resource constraints.
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Furniture Problem: Primal and Dual problems

The primal and dual of the Furniture problem are:

Primal Dual
(1.0) Max revenue = 45x, + 80x, (4.0) Min Cost = 400w, + 450w,
(20) 5X1 + 20X2 < 400 Mahogany (5.0) 5w; + 10w, = 45 Chairs
(3.0) 10x; + 15x, < 450  Labor (6.0) 20w; + 15w, > 80 Tables
Xy, %5 = 0 wi,wy =0

Mahogan
Chairs Tables gany Labor

* In this dual problem, the decision variable wl represents the opportunity cost of the mahogany resource, and
w2 is the opportunity cost of the labor resource. These decision variables are the shadow prices of mahogany

and labor capacity.
» Notice the switch between the objective function coefficients and the right hand sides of the primal and dual

problems.

 Also, notice that the rows of the primal problem are the columns of the dual problem. This means that
inequalities (5.0) and (6.0) ensures that the opportunity costs of consumption of resources per unit of production
of chairs and tables, respectively, should be at least the value of their price. The objective is to minimize the

resource opportunity costs.
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Constraint (6.0)
Tables

Furniture Dual Problem: Graphical solution

(4.0)

\\.\ Objective Function

N
N
'\
RN
AN

Constraint (5.0)
Chairs

Dual

(4.0) Min Cost = 400w, + 450w,

(5.0) 5w; + 10w, > 45 Chairs
(60) 20W1 + 15W2 2 80 Tables
er WZ 2 0

Mahogany Labor
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Furniture Dual Problem: Graphical solution

Dual

(4.0) Min Cost = 400w, + 450w,

(5.0) 5wy + 10w, > 45 Chairs

h Constraint (6.0) (6.0) 20wy + 15w, = 80 Tables

Tables
(51, $4) Wi, Wz 2 0
L Mahogany Labor

Constraint (5.0)
Chairs

'~ Objective Function = $2200
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Furniture Dual Problem: Parametrized

Furniture dual problem

Let price, be the price of product p € products = {chairs, tables}, and let capacity, be the capacity available of resource
r € resources = {mahogany, labor}. Let bom,; be the amount of resource r required by product p.

Let shadowPrice, be the shadow price, or opportunity cost, of resource r € resoruces = {mahogany, labor}

Min Z capacity,.shadowPrice,
F o Fesource

Subject to :

Z bom, ,shadowPrice, = price, Y p € products
r e resource

shadowPrice, = 0 ¥V r € resources
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Furniture Dual Problem: Solved with Gurobi ..1

The data of the Furniture Dual problem is identical to the original Furniture problem —called Primal Problem.

# resources data

resources, capacity = multidict({
‘mahogany ' : 4ee,
"labor’: 450 })

# products data,

products, price = multidict({
‘chair': 45,
‘table’: 80 })

# Bill of materials: resources required by each product
bom = {

( ‘'mahogany’, 'chair'): 5,

( ‘'mahogany’, 'table’): 2@,

("labor’, ‘chair'): 1@,

("labor’, ‘table’): 15 }
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Furniture Dual Problem: Solved with Gurobi ..2

The right hand side of the constraints are the price of each product. The left hand side is the opportunity cost
of consuming each resource when making the products. The sense of the inequalities is greater than equal
to have an evaluation of the resource at least equal to the price.

# Declare and initialize model
f = Model( Furniture’)

# Create decision variables for the resources capacity Z bom, ,shadowPrice, = price, ¥ p € products

shadowPrice = f.addvars(resources, name="price") FE revource

# Create an object of type List to store the constraints for each product

pro = f.addConstrs(((sum(bom[r,p]*shadowPrice[r] for r in resources) »>= price[p]) for p in products), name="V")

f.setobjective(shadowPrice.prod(capacity)) GRB.MINIMZE is the default

Coefficients in the objective function are the resource capacities
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Furniture Dual Problem: Solved with Gurobi ..3

# save model for inspection
f.write( furniturebual.lp’)

% Model Furniture
YW LP format - for model browsing. Use MPS format to capture full model detail.
Minimize
400 price[mahogany] + 458 price[labor]
Subject To
V[table]: 28 price[mahogany] + 15 price[labor] »= 88
V[chair]: 5 price[mahogany] + 1@ price[labor] »>= 45
Bounds
End
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Furniture Dual Problem: Solved with Gurobi ..4

# run optimization engine
f.optimize()

Optimize a model with 2 rows, 2 columns and 4 nonzeros
Coefficient statistics:

Matrix range [5e+0@, 2e+01]
Objective range [4e+82, 5e+82 ]
Bounds range [Be+0@, Qe+80 ]
RHS range [5e+81, Se+@1]

Presolve time: ©.13s
Presolved: 2 rows, 2 columns, 4 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
e B .8000000e+00 1.562586e401 8 .000000e+00 Bs
2 2.20000680e4+03 Q. 880000e4+00 8 .000000e+00 Bs
Solved in 2 iterations and ©.16 seconds Gurobi solver finds the optimal solution

Optimal objective 2.200000000e+83 of the Eurniture dual problem

# display optimal values of decision variables
for v in f.getVars():
if (abs(v.x) > 1le-6):
print(v.varhame, v.x)

# display optimal total revenue value
print('total revenue’', f.objval)

('price[mahogany]', ©.9999999999999996) —> $1.00 The optimal value of the shadow price for mahogany is $1.00
(“price[labor]”, 4.000000000000001) ——> $4.00 The optimal value of the shadow price for labor is $4.00
(“total revenue®, 2200.0000000000005) > $2,200 The optimal objective function value is $2,200
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Furniture Dual Problem: Solved with Gurobi .. 5

# display shadow prices of product constraints
for p in pro:
if (abs(pro[p].P1) > le-6):
print(pro[p].ConstrName, pro[p].Pi)
('V[table]', 14.0)
('V[chair]', 24.000000000000004)

* The “shadow prices” of the products’ constraints are 14 tables and 24 chairs. These are the
optimal (make) values of the Furniture primal problem. Notice that in both problems, primal and
dual, the optimal objective function value is $2,200. This is not a coincidence!!!



GUROBI

OPTIMIZATION

Duality in Linear Programming

Remarks:

* In general, it can be shown that the dual of a dual problem is the primal problem, and that when
either problem has an optimal solution, the other problem also has an optimal solution, and the
optimal objective function value of both problems is the same.

» Another important feature of duality in linear programming is that the optimal solution of the dual
problem is contained in the information provided by the simplex method while solving and
finding an optimal solution to the primal problem.

 Duality in linear programming provides a good characterization of optimality conditions that can
be exploited computationally to solve LP problems efficiently.
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Relationship between primal and dual problems

1) i'th constraint <

2) i'th constraint =

3) i'th constraint =

4) j’'th variable = 0

5) j'th variable < 0

6) j'th variable unrestricted
Remark:

Primal (maximize) Dual (minimize)

I'th variable 2 0
I'th variable <0

i'th variable unrestricted
J'th constraint 2

j'th constraint <

j'th constraint =

Primal
(1.0) Max revenue = 45x, + 80x,
(2.0) 5x1 + 20x, <400  mahogany
(3.0) 10x; + 15x, < 450  Labor
X1,%3 =0

Chairs Tables

Dual
(4.0) Min Cost = 400w, + 450w,
(5.0) 5w; + 10w, > 45  Chairs
(6.0) 20w, + 15w, > 80 Tables
wi, Wy =0

Mahogany Labor

Notice that the relationship between the Furniture primal and dual problems is captured by rows 1) and 4)
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Optimality conditions in linear programming .. 1

Consider the Furniture primal and dual problems:

Primal Dual
(1.0) Max revenue = 45x,; + 80x, (4.0) Min Cost = 400w, + 450w,
(2.0) 5x; + 20x, <400  manhogany (5.0) 5wy + 10w, =45  Chairs
(3.0) 10x; + 15x, < 450  Labor (6.0) 20w, + 15w, = 80 Tables
X1,X3 =0 wy,wy =0
Chairs Tables Mahogany  Labor

Furniture primal and dual problems in standard form

(1.0) Max revenue = 45x; + 80x, (4.0) Min Cost = 400w; + 450w,
(2.0) 5x1 + 20x, + hy = 400  Mahogany (5.0) 5wy + 10w, —s; = 45  Chars
(3.0)  10x; + 15x, + h, = 450 Labor (6.0) 20wy + 15w, — 5, = 80 Tables
X1,%2 hyhy =0 W1, W5S1,S, = 0
Chairs Tables

Mahogany Labor

h, is the slack variable of the mahogany constraint s, IS the surplus variable of the chairs constraint
h, is the slack variable of the labor constraint s, IS the surplus variable of the tables constraint
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Optimality conditions in linear programming .. 2

Consider the optimal solution of both problems, primal and dual

Primal optimal solution: Dual optimal solution:
x1=24,x2=14,h1=0,h2=0 wl=1,w2=4,5s1=0,s2=0

(1.0) Max revenue = 45(x1 = 24) + 80(x2 = 14) = 2200 (4.0) Min Cost = 400(w1l =1) + 450(w2 = 4) = 2200
Mahogany Chairs
(2.0) 5(x1 = 24) + 20(x2 = 14) + (h1 = 0) = 400 binding (5.0)05(wl=1)+10(w2=4) —(s1 =0) =45

Labor Tables
(3.0) 10(x1 = 24) + 15(x2 = 14) + (h2 = 0) = 450 binding (6.0) 20wl =1) + 15(w2 =4) — (s2 = 0) = 80

X1,%X3 hyhy =0

W1, W2 S1, 57 >0
Chairs Tables

Mahogany Labor
Remarks

» Note that the mahogany and labor constraints are binding, i.e. the slack variables (hl1 = h2 = 0).

* Note that the shadow price of the mahogany and labor constraints are positive, i.e. (wl =1, w2 = 4).
* Note that the chairs and tables constraints are binding, i.e. the surplus variables (s1 = s2 = 0).

* Note that the “shadow price” of the chairs and tables constraints are positive, i.e. (x1 =24, x2 = 14).
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In summary

Primal optimal solution Dual optimal solution

Chair variable x1 = 24

Chair constraint (is binding) surplus variable s1 =0

Table variable x2 = 14 Table constraint (is binding) surplus variable s2 =0
Mahogany constraint (is binding) slack variable h1 =0 Mahogany shadow price wl =1
Labor constraint (is binding) slack variable h2 =0 Labor shadow price w2 = 4

Complementary (a.k.a. orthogonality) conditions in linear programming optimal solutions

« x*s = 0. At optimality, the product of the decision variables in the primal problem and the
associate surplus (slack) variables in the dual problem is always zero.

* h*w = 0. At optimality, the product of the slack (surplus) variables in the primal problem and the
associate shadow prices in the dual problem is always zero.
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Summary of optimality conditions for linear programming

« A solution (x1=24, x2=14) to the primal problem and a solution (w1=1, w2=4) of the dual
problem are optimal, if and only if:

* Primal feasibility: we have found a solution of the primal problem that satisfy all its
constraints.

» The production plan satisfies the mahogany and labor constraints.

(2.0) 5(x1 = 24) + 20(x2 = 14) = 400 vanogany capaciy
(30) 10(x1 = 24) -+ 15(x2 — 14) — 45() Labor capacity

« Dual feasibility: we have found a solution of the dual problem that satisfy all its constraints.

» The shadow prices associated to the mahogany and labor resources satisfy the price
constraints for the chairs and the tables.

(50) 5(W1 — 1) -+ 10(W2 — 4_) — 45  Chairprice
(60) ZO(W]_ = 1) -+ 15(W2 — 4) — 8() Table price



GUROBI

OPTIMIZATION

Summary of optimality conditions for linear programming

« Complementary (orthogonality) conditions:

» The product of the decision variables in the primal problem and the associate surplus
variables in the dual problem is always zero. (Cost efficient).

« Since we are building 24 chairs, the surplus variable of the constraint of the price of
chairs is 0. That is, x1*s1=0. This means that the opportunity costs of building chairs is
equal to the price of the chair:

(5.0) 5(wl = 1) + 10(w2 = 4) — (s1 = 0) = 45

» Since we are building 14 tables, the surplus variable of the constraint of the price of
tables is 0. That is, x2*s2=0. This means that the opportunity costs of building tables is
equal to the price of the table:

(6.0) 20wl = 1) + 15(w2 = 4) — (s2 = 0) = 80
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Summary of optimality conditions for linear programming

« The product of the decision variables in the dual problem and the associate slack variables
in the primal problem is always zero. (Resource efficient).

» Since the shadow price (opportunity cost) of mahogany is $1, the slack variable of the

mahogany constraint is 0. This means we are using the mahogany resource efficiently
and there is no waste.

(2.0) 5(x1 = 24) + 20(x2 = 14) + (h1 = 0) = 400

 Since the shadow price (opportunity cost) of labor is $4, the slack variable of the labor
constraint is 0. This means we are using the labor resource efficiently and there is no
waste.

(3.0) 10(x1 = 24) + 15(x2 = 14) + (h2 = 0) = 450
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Summary of optimality conditions for linear programming

* The optimal objective function value of the primal problem = the optimal objective function of
the dual problem. This mathematical theorem is known as strong duality.

(1.0) Max revenue = 45(x1 = 24) + 80(x2 = 14) = 2200

(4.0) Min Cost = 400(wl =1) + 450(w2 = 4) = 2200
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Dual Simplex method

Variation of Simplex method
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The Dual simplex method

The key idea of the dual simplex method is to apply the simplex method to the dual problem, but using
the canonical form of the primal problem.

Xy A
Tables |- Original LP Problem Formulation LP Problem Formulation in Canonical Form
(1.0) Max revenue(z) = 45x; + 80x, (1.0) Max z = 2400 — 25/3 x1 — 80/15 h2
(2.0) 5x1 + 20x, < 400 Mahogany
_ 25 4
(3.0) 10x; + 15x, < 450 Labor (2.0) h1 =200+ °/3x1 +%/3 h2
X1,X3 = 0 (3.0) x2= 30 —%/3x1 -1/, h2
F -+ Tables
" = x1,x2,h1,h2 > 0
(fevenue) Consider the following basic infeasible solution:
- x1=0, x2=30, h1=-200, h2=0

20

N

’(Mahogany)
@ |
® | >

©00) , /1 X1= 0
i N Chairs
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The Dual simplex method ..2

» Recall that the simplex method iterates from one basic feasible solution to another, always trying to

improve the value of the objective function.
Xy A

Tables | * The simplex method finds an optimal basic feasible solution when all the reduced costs of the non-

basic variables of the primal problem expressed in a canonical form are < 0. (Maximization problem).

* The idea of the dual simplex method is to start with a (dual) basic feasible solution (i.e. all the
reduced costs of the non-basic variables are < 0). Notice that if all the basic variables are = 0, then
the current solution is a basic feasible solution for the primal problem in a canonical form that

F’ | satisfies the optimality conditions, consequently this solution is optimal.

(Revenue)

o .

« Dual basic feasible solution: since reduced costs LP Problem Formulation in Canonical Form

of non-basic variables are < 0: N 7L 30
S~ x1=0, x2=30, h1=-200, h2=0 (1.0) Maxz = 2400 — “°/3x1 = °Y/, c h2

(2.0) A1 =—200+25/;x1 + 4/ h2

20

(3.0) x2= 30 —%/3x1-1/ch2

x1,x2,h1,h2 >0
’(Mahogany)
@ |
® |

N

7

(0.0) /1 X1= 0
i Chairs
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The Dual simplex method ..3

« Suppose that at least there is one basic variable that is negative. Choose the basic variable with the
most negative value as the variable to leave the basis. In this example, the variable hl will leave the

X2 1 basis.
TabIeS T . . . . . . . . .
« If all the coefficients of the non-basic variables in the canonical form equation of the basic variable

leaving the basis are negative, STOP the LP problem is infeasible.

LP Problem Formulation in Canonical Form
-g i (1.0) Max z = 2400 — 2°/5x1 =80/, h2

(2.0) h1l 25/2x1 + 4/ h2

3.0) x2= 30 —%/3x1 -1/, h2
x1,x2,h1,h2 = 0

20

N

’(Mahogany)
@ |
® | >

©00) , /1 X1= 0
i Chairs
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The Dual simplex method ..4

 Else, there is at least one non-basic variable with a positive coefficient, consider the minimum ratio test
of the absolute of the reduce costs and the positive coefficient of non-basic variables in the canonical
X, 4  form equation of the basic variable leaving the basis. The non-basic variable with the minimum ratio
Tables-  enters the basis. Determine the new (dual) basic feasible solution. Minimum ratio test:

» Determine the new (dual) basic feasible solution by pivoting.

F‘ | LP Problem Formulation in Canonical Form
= (1.0) Max z = 2400 — 2°/5x1 =80/ h2

* Min { (25/3)/(25/3)=1, (80/15)/(4/3)=4,}= 25/3)/(25/3)=1. Hence, the variable x1 enters the basis.

(2.0) h1 = —200

1+4/3h2

3.0) x2= 30 —%/3x1-1/,ch2
x1,x2,h1,h2 > 0

’(Mahogany)
@ |
© | >

©00) , /1 X1> 0
i Chairs

20

%

Pivot
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The Dual simplex method ..5

 Pivoting). In equation (2.0), express basic variable x1 in terms of non-basic variables h1l and h2:

(2.0) x1=24+3/5ch1 — 4/, h2

Xy A
Tables |- 2 1
« In equation (3.0), replace the value of x1: (3.0) x2 =14 — /25 hl — /25 h2 x1,x2,h1,h2 =0
| < In the objective function (1.0), replace the value of x1; (1.0) Max z = 2200 — 1h1 — 4h2
F 1 » Notice that the current solution is both a primal basic feasible solution, since
(Revenue) Pivot all basic variables are = 0; and a dual basic feasible solution, since all the
reduced costs associated to the non-basic variables are < 0.
0 . * As we have seen, this solution satisfies the complementary conditions:
» Therefore, the solution is optimal.

20

N

Polyhedron o
N ’(Mahogany)
- © | >

©00) , /1 X1= 0
i Chairs
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The Dual simplex method ..5

* The dual simplex method is recommended for LP problems in which a
dual basic feasible solution is available.

* The dual simplex method is particularly useful for reoptimizing an LP
problem after a constraint has been added, since we don’t need to start
the solution approach from scratch.

* The cutting planes method to solve MIP problems relies heavily on the
dual simplex. The core idea of the cutting planes method is to add a
constraint to the LP problem continuous relaxation whenever an integer
variable has a fractional value in the optimal solution. The added
constraint will make this fractional value of the integer variable infeasible.
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